说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 热震结构损伤
1)  thermal shock construction damage
热震结构损伤
1.
This paper studied the feasibility of determining and comparing the thermal shock construction damage of refractory by ultrasonic flaw detector.
探讨了利用超声波探伤仪测定或比较耐火材料热震结构损伤的可行性 。
2)  resistance to thermal shock
热震损伤
1.
The study of resistance to thermal shock of inter-type and nano/nano-type ZTM/Al_2O_3 composite;
纳米ZTM/Al_2O_3复相陶瓷材料抗热震损伤性能
3)  structural damage
结构损伤
1.
Application of strain mode test to structural damage diagnosis of aqueducts;
应变模态试验技术在渡槽结构损伤诊断中的应用
2.
System identification for structural damage of space grids;
网架结构损伤杆件的分区查找法
3.
Judging structural damage location by method of modal shape square;
振型平方差法判断结构损伤位置
4)  structure damage
结构损伤
1.
Piezoceremic-based testing technology for structure damages can be used for real-time on-line damage testing in mechanical structures.
将压电陶瓷片粘贴在待测结构的表面,运用压电阻抗技术对结构中螺栓松动的损伤进行检测分析,实验表明,通过检测压电动态阻抗的变化可分析出螺栓松动的结构损伤情况。
2.
The change ratio of the element modal strain energy,which acted as the indicator for structure damage detection,can successful find the location and severity of the damage structure.
提出了一种基于模态应变能识别复合材料结构损伤的遗传-神经网络法。
3.
When applying artificial neural network model to the identification of structure damage,some disfigurements of the network model itself are pointed out.
首先指出了当人工神经网络算法解决结构工程实践问题时,网络结构本身所面临的缺陷;然后描述了人工神经网络和遗传算法的概念,从理论和实例上说明了运用遗传算法优化和改进神经网络结构的可行性,以结合二者的长处解决工程实践问题;接着详细阐述了如何利用遗传算法优化或改进BP(B ack P ropagation)网络模型和RBF(R ad ia l B as is Function)网络模型,以及如何利用遗传优化BP网络和遗传优化RBF网络模型分析结构损伤,进而比较遗传BP网络和RBF网络在结构损伤分析方面的性能。
5)  damaged structure
损伤结构
6)  structure damage
结构性损伤
1.
Probing into problems of the structure damage of soil and the damage model;
土的结构性损伤与损伤模型问题探讨
补充资料:热结构力学
热结构力学
thermo-structural mechanics

   研究工程结构(简称结构)在热作用下,由于温度变化而引起的结构强度、刚度、稳定性和承载能力的变化规律的学科。结构力学的分支学科。广泛用于动力机械、高速飞行器、核反应堆结构及石油化工机械设备的设计、计算和安全分析中。
   结构受热作用时,各部分因温度变化而胀缩,结构因受约束或为保持其各部分变形的协调而产生热应力或温度应力;另外,材料的力学参量也会随温度变化,影响温度应力的量值。由热应力引起的结构破坏,即热强度问题。由不均匀热作用引起的胀缩还会使结构产生不允许的变形,这就是热刚度问题。薄壁结构因受热而产生的压应力会引起热屈曲,导致结构变形并丧失承载能力。(见热弹性力学)
   结构中的热应力在短时内产生剧烈变化的现象称为热冲击。热冲击会使结构内出现应力波而导致结构破坏。另外,由于结构内存在很高的温度梯度,例如当淬火及突然冷却时,导致结构表面剧烈收缩并产生巨大的拉应力,使脆性材料的结构产生裂纹。在热冲击下,结构物还会产生热振动。温度对结构的刚度、阻尼有很大影响,也会影响振动的频率和振幅。在研究非线性振动时,常需考虑热应变的影响。
    温度的交替变化可引起结构内部热应力的交替变化;如果结构已承受恒定的或交变的载荷,则热应力和载荷应力的叠加,会加速结构的疲劳,降低结构的寿命。如果温度或载荷交替变化的幅度较大,则可导致塑性变形。由于交变温度与载荷引起的正反方向的塑性变形,会使结构产生低周热疲劳破坏。
   对于韧性较好的材料和结构,热应力可导致结构产生不可逆的塑性变形,即热塑性问题。在热作用下,含裂纹型缺陷的结构引起的断裂是高温下工作的构件安全分析的重要问题。近年来,热断裂力学得到了发展。损伤力学应用于在温度作用下的塑性损伤和蠕变损伤 ,是近年来热结构力学的一个重要进展。它使得在高温下工作的结构构件的承载能力与蠕变寿命的持久强度问题,得到较好的解决。已对热和变形的耦合问题、热弹性波、非均匀多层介质的热应力和热粘弹(塑)性问题进行了研究,使热结构力学有了长足的发展而渐趋成熟,它在各工程中的应用也更加广泛和深入。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条