说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 逆映射
1)  inverse mapping
逆映射
1.
A chaotic communication based on the inverse mapping of the variable parameters;
基于混沌参数切换逆映射的混沌通信系统
2.
The inverse mapping is achieved through BP network,and neural network modul is constructed for designing process parameters.
以离子渗氮为例 ,建立了渗层性能预报神经网络模型 ;通过误差逆传播 (BP)网络实现了逆映射 ,建立了工艺参数设计的神经网络模块。
3.
Mappings and inverse mappings between two power sets as well as between two complete lattices with complement operations are discussed in this paper.
从映射与逆映射的基本关系谈起,较系统地整理了模糊映射及其性质,将其扩展为序同态概念并进而纳入于具有逆序对合对应的完备格之间的映射理论之中。
2)  inverse map
逆映射
1.
A chaotic digital communication system based on binary value of chaotic inverse map is presented in this paper.
根据混沌逆映射的二值性 ,提出了一种基于逆映射的混沌数字通信系统及其实现方案。
3)  inverse warping
逆向映射
4)  Weak Inverse Attribute Mapping
弱逆映射
5)  invertible map
可逆映射
1.
Utilizing the stretch and fold mechanism,an invertible map set based image encryption algorithm is proposed.
利用拉伸和折叠的原理,提出了一种可逆映射集合的图像加密算法。
6)  contragradient mapping
逆步映射
补充资料:逆映射


逆映射
inverse mapping

  逆映射沙脚m祀n.n那粗;o6p~eo,6p‘e“e],溥算子(~。体份幻r),单值满映射(算子)f:M~f(胡的 一个单值映射g,使得 9 of=Ix在M上,(l) fo夕=I,在f(M)上,(2)其中MC=X,f(M)CY,而X,Y都是集合. 如果g只满足条件(l),则称为f的左逆映射(kn.mve眨祀订以pp吨),如果只满足条件(2),则称为f的右逆映射师助t一~Inapp吨).逆映射f一’存在,当且仅当对每个y〔f(M),完全逆象f一’(y)由单个元素x〔M组成.如果f有逆映射f一’,则方程 f(x)=夕(3)对每一个y‘f(M)有唯一的解.如果仅仅右逆f万’存在,则(3)有一个解,但是它的唯一性问题尚未解决.如果仅仅左逆f厂’存在,并假设解存在,则解是唯一的.如果X和Y是向量空间,而A是从X到Y的线性算子,那么如果A一,存在,则它也是线性的.一般地,如果X和Y被赋予某种结构,可能出现这样的情况;A的某些性质也由A一,继承,假设它存在的话.例如,如果X和Y是BaJ坦ch空间,而A:X~Y是一个闭算子,则A一’也是闭的;如果H是一个H几比吐空间,而A:H~H是自伴的,则A一,也是自伴的;如果f:R一R是一个奇函数,则f一’也是奇的,等等.对许多重要的线性算子类,A的连续性并不总蕴涵A一’的连续性,例如对完全连续算子,就是如此.下面是一个线性算子逆的连续性的重要检验准则. 设X是一个带有某个基的有限维空间,并设A:X~X是用关于这个基的矩阵(气)给定的,则A一’存在,当且仅当det(气)尹0(在这种情形下,A和A一’是自动连续的). 设X和Y是Bal坦ch空间,并设A是从X到Y的连续线性算子. l)如果}{Axl})m{xJ!,其中m>0,则A一,存在并且是连续的. 2)如果X“Y,}!A}}蕊l,则(I一A)一’存在、连续并且 (I一A)一’二艺A”, n.0其中右边的级数按空间了(X)中的范数收敛. 3)算子A一’存在并且在整个Y上连续,当且仅当共扼A‘有一个在了上定义和连续的逆.这里(A一’).钊A’)一’. 4)如果A一‘存在,连续并且如果}}A一引}<<}A一’}一’,则B一’也存在,连续并且 B一’=A一’艺[(A一B)A一’]”· 月一0这样,可逆算子的集合在了(X,Y)中按这个空间的一致拓扑(训而nn topolo留)是开的. 5)B越坦ch开映射定理(E以脸ch。详nn‘Pp吨山印-化m):如果A是X到Y上的一对一映射,则逆映射存在并且是连续的.这个定理有下面的推广:从满完全空间X到分离的桶型空间Y上的一个一对一连续线性映射是一个拓扑同构(is~rp恤m). E山比此空间上线性算子的谱理论包含连续线性算子逆的存在性和连续性的一些结果.例如,如果A是自伴的并且又不是实的,则(A一又I)“’存在并且是连续的.
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条