1) ellipsoid
[英][i'lipsɔid] [美][ɪ'lɪpsɔɪd]
椭球体
1.
SOME MAJOR PROBLEMS IN THE THEORY OF ELLIPSOIDAL DRAW──The Necessity of Establishing the Theory of Analogy Ellipsoidal Draw;
椭球体放矿理论的几个主要问题──类椭球体放矿理论建立的必要性——
2.
Calculation of the geological reserves of horizontal wells based on ellipsoid Method
基于椭球体法的水平井地质储量计算
3.
Analyzes the heat exchange from a person s skin to surroundings in theory, combining the fact that the projected area factor of a person is identical to that of an ellipsoid, and the heat loss by convection is similar as well, calculates the parameters of the ellipsoidal device designed to simulate the human body thermally which is suitable for Chinese.
从理论上对人体与外界环境的热交换进行了分析,并结合人体的物理特性:投影面积系数和对流换热系数与椭球体的相似性,以及中国人的部分生理参数,计算了模拟人体热损失的传感器的设计参数。
2) spheroid
[英]['sfɪərɔɪd] [美]['sfɪrɔɪd]
椭球体
1.
Introduced the simple simulation test to this model,expounded the transition transform relation between plate drawing model and spheroid drawing model,analyzed the related problem of using this model put a reference to the mines adopting caving mining method and related enterprise.
提出了崩落采矿法放出体近似倾斜厚板的板式放矿模型,介绍了对该模型进行的简易模拟试验,阐述了板式放矿模型与椭球体放矿模型的过渡转化关系,分析了应用该模型的有关问题,可供采用崩落采矿法的矿山及有关单位参考。
4) ellipsoidal conductor
导体椭球
1.
The electric potential and charge distribution of a charged ellipsoidal conductor;
带电导体椭球的电势和电荷分布
2.
The relation between the surface charge density of a charged ellipsoidal conductor and its principal radii
带电导体椭球的面电荷密度与主曲率半径的关系
5) microspheroid
微椭球体
6) ellipsoid shell
椭球壳体
1.
In this paper, we refer to derivation process of Lame slution; directing towards different range of application, we deduce the stress formula of ellipsoid shell of internal pressure at any point according to non-bending moment theory.
参照拉梅解答的推导过程,针对不同的适用范围,根据无矩理论推导了椭球壳体上任一点在内压作用下的应力公式。
补充资料:马克劳林椭球体
均匀流体球自转时的一种平衡形状。1742年马克劳林第一次严格证明:旋转椭球体可以是均匀流体自转时的平衡形状。后来很多数学家改进了这项工作,成为天体形状理论中第一个经典结论。若σ 为流体密度、ω为它的自转速率、G 为万有引力常数,则当参数
时,平衡形状可以是旋转椭球体。此旋转椭球体称为马克劳林椭球体。若a为椭球体的赤道半径,c为极半径(在自转轴上),则必须是a>c。这说明马克劳林椭球体一定是扁球体,不可能是长球体。当Ω<Ω0时,每一Ω值都对应一个马克劳林椭球体。Ω值越大,相应的椭球体越扁。在极限情况Ω=Ω0时,相应的a=2.7c。李亚普诺夫证明,当Ω<Ω1=0.18711...时,相应的马克劳林椭球体是稳定的;而当Ω1<Ω<Ω0时,相应的马克劳林椭球体是不稳定的。
时,平衡形状可以是旋转椭球体。此旋转椭球体称为马克劳林椭球体。若a为椭球体的赤道半径,c为极半径(在自转轴上),则必须是a>c。这说明马克劳林椭球体一定是扁球体,不可能是长球体。当Ω<Ω0时,每一Ω值都对应一个马克劳林椭球体。Ω值越大,相应的椭球体越扁。在极限情况Ω=Ω0时,相应的a=2.7c。李亚普诺夫证明,当Ω<Ω1=0.18711...时,相应的马克劳林椭球体是稳定的;而当Ω1<Ω<Ω0时,相应的马克劳林椭球体是不稳定的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条