1) fuzzy cluster analysis of ISOTATA
ISOTATA模糊聚类分析
2) fuzzy clustering analysis
模糊聚类分析
1.
The application of fuzzy clustering analysis in the performance evaluation of garment manufacture;
用模糊聚类分析法评价服装加工性能
2.
The application of fuzzy clustering analysis in the choice of fabric;
模糊聚类分析在面料选择中的应用
3.
Comprehensive assessment of network security base on fuzzy clustering analysis;
基于模糊聚类分析的网络安全综合评价
3) Fuzzy cluster analysis
模糊聚类分析
1.
Application of fuzzy cluster analysis in fabric variation comfortability evaluation;
模糊聚类分析在织物变形舒适性能评价中的运用
2.
Ground water quality assessment based on fuzzy cluster analysis;
基于模糊聚类分析的地下水环境质量评价
3.
A study on the handle of natural fiber like fabric with fuzzy cluster analysis;
模糊聚类分析在仿真织物风格研究中的应用
4) fuzzy clustering
模糊聚类分析
1.
Study on the classification and supporting of the surrounding rock of the gateway based on fuzzy clustering;
基于模糊聚类分析的回采巷道围岩分类与支护研究
2.
In view of the request of the modern traffic monitoring system for the vehicles type automatic identification,a method used in the automobile type recognition based on improved BP nerve network and a method based on fuzzy clustering are proposed.
针对现代交通管理和监控系统对车辆类型自动识别的要求,提出一种用于汽车类型识别的改进的BP神经网络分类器的设计方法以及基于模糊聚类分析的车辆类型自动识别方法。
3.
This paper presents how to apply the systematic fuzzy clustering to the real estates so that the appropriate target markets can be chosen.
作者将系统模糊聚类分析法引入多元房地产市场细分和选择目标市场中,归类分析广州市房地产市场,从中寻找房地产市场空白点,分析房地产市场各方面组合对销量的影响。
5) fuzzy classification analysis
模糊聚类分析
1.
The principle of fuzzy classification analysis,process and its application on choosing substitute accessorial cementitious materials are also discussed in this paper.
应用模糊数学原理,提出了一种进行辅助胶凝材料合理代用的方法——模糊聚类分析方法,它可避免凭经验选择代用辅助胶凝材料所带来的主观片面性,文中介绍了模糊聚类分析法的基本原理、分析步骤及其在混凝土原材料中选择代用的辅助胶凝材料方面的应用实例。
2.
Fuzzy classification analysis method was a new analysis method in system analysis ;that was,manager set up a fuzzy analogic relationship between every branch institute according to managing properties,behaving properties,studying properties,economy properties,foundation data of every branch institute,according to system ev.
决策者对下属各分支机构的有效宏观管理方法是具体问题具体分析 ;具体措施即对不同性质的分支机构采用不同的目标管理方案 ;模糊聚类分析是系统分析中新兴的一种分析方法 ,他是管理者对下属的各个分支机构按其管理特征、行为特征、研究特征、经济特征 ,基础数据 ,及上级管理部门在一定原则下所给定的系统评价指标 ,建立起各个分支机构相互间的模糊相容关系 ,同时按该种模糊相容关系进行定量计算 ,找出他们的模糊等价关系的定量计算数据结果 ;该数据可作为决策依据 ,决策者依据经验、经济条件和形势给出一个或多个聚类指标 ,按模糊等价关系中得到的数据 ,即可对各分支机构作出相应分类管理策略方法 ,从而实施科学有效的分类管理方案。
6) fuzzy set analysis
模糊聚类分析
1.
For the deficiency of the research on the relationship between multi malfunctions and multi portents, fuzzy set analysis theory and method were described and applied to the diagnosis of turbine rotator vibration malfunction.
针对汽轮发电机组多个振动故障与多个振动信号之间综合关系研究的不足,阐述了模糊聚类分析的理论、方法及聚类效果的判别原则,并将其应用于汽轮发电机组转子振动故障的诊断研究中。
2.
First,the abroad application of fuzzy set analysis to the mechanical trouble diagnosis,then the best mathematical model of faulty diagnosis is raised.
首先介绍了模糊聚类分析在机械故障诊断中的广泛应用,提出了一种最佳故障诊断数学模型,并对相关参数的确定和数据处理进行了深入的探讨,对聚类分析算法的改进进行了初步的研究,给出了一些有益的结论和改进方法。
补充资料:模糊聚类分析
涉及事物之间的模糊界限时按一定要求对事物进行分类的数学方法。聚类分析是数理统计中的一种多元分析方法,它是用数学方法定量地确定样本的亲疏关系,从而客观地划分类型。事物之间的界限,有些是确切的,有些则是模糊的。例如人群中的面貌相像程度之间的界限是模糊的,天气阴、晴之间的界限也是模糊的。当聚类涉及事物之间的模糊界限时,需运用模糊聚类分析方法。模糊聚类分析广泛应用在气象预报、地质、农业、林业等方面。通常把被聚类的事物称为样本,将被聚类的一组事物称为样本集。模糊聚类分析有两种基本方法:系统聚类法和逐步聚类法。
系统聚类法 系统聚类法是基于模糊等价关系的模糊聚类分析法。在经典的聚类分析方法中可用经典等价关系对样本集X进行聚类。设R是 X上的经典等价关系。对X中的两个元素x和y,若xRy或(x,y)∈R,则将x和y并为一类,否则x和y不属于同一类。
相应地,可用X上的模糊等价关系对样本集X进行模糊聚类。设慒是X上的模糊等价关系,是慒 的隶属函数。对于任何α∈[0,1],定义慒 的α截关系
Sα是X上的经典等价关系。根据Sα得到X 的一种聚类,称为在α水平上的聚类。即对于X中的任意两个元素x和y,若,则x和y属于同一类;否则x和y不属于同一类。
应用这种方法,分类的结果与α的取值大小有关。α取值越大,分的类数越多。α小到某一值时,X中的所有样本归并为一类。这种方法的优点在于可按实际需要选取α的值,以便得到恰当的分类。
系统聚类法的步骤如下:
①用数字描述样本的特征。设被聚类的样本集为 X={x1,...,xn}。每个样本均有p种特征,记作xi=(xi1,...,xip);i=1,2,...,n;xip表示描述样本xi的第p个特征的数。 ②规定样本之间的相似系数rij(0≤rij≤1;i,j=1,...,n)。rij描述样本xi与xj之间的差异或相似的程度。rij 越接近于1,表明样本xi与xj之间的差异越小;rij 越接近于0,表明xi与xj之间的差异越大。rij可用主观评定或集体评分的方法规定,也可用公式计算,如采用夹角余弦法、最小最大法、算术平均最小法等。
因为rii=1(xi与自身没有差异),rij=rji(xi与xj之间的差异等同于xj与xi之间的差异),所以由rij(i,j=1,...,n)可得X上的模糊相似关系:
一般,R不具备可传递性,因而R不一定是 X上的模糊等价关系。
③运用合成运算R2=R⋅R(或R4=R2⋅R2等)求出最接近相似关系R的模糊等价关系S=R2(或R4等)。若R已是模糊等价关系,则取S=R。
④选取适当水平α(0≤α≤1),得到X 的一种聚类。
逐步聚类法 逐步聚类法是一种基于模糊划分的模糊聚类分析法。它是预先确定好待分类的样本应分成几类,然后按最优化原则进行再分类,经多次迭代直到分类比较合理为止。
在分类过程中可认为某个样本以某一隶属度隶属于某一类,又以另一隶属度隶属于另一类。这样,样本就不是明确地属于或不属于某一类。若样本集有 n个样本要分成c类,则它的模糊划分矩阵为
此c×n模糊划分矩阵有下列特性:①uij∈[0,1];i=1,...,c;j=1,...,n。②即每一样本属于各类的隶属度之和为1。③即每一类模糊子集都不是空集。
模糊划分矩阵有无穷多个,这种模糊划分矩阵的全体称为模糊划分空间。最优分类的标准是样本与聚类中心的距离平方和最小。因为一个样本是按不同的隶属度属于各类的,所以应同时考虑它与每一类的聚类中心的距离。逐步聚类法需要反复迭代计算,计算工作量很大,要在电子计算机上进行。算出最优模糊划分矩阵后,还必须求得相应的常规划分。此时可将得到的聚类中心存在计算机中,将样本重新逐个输入,去与每个聚类中心进行比较,与哪个聚类中心最接近就属于哪一类。
这种方法要预先知道分类数,如分类数不合理,就重新计算。这就不如运用基于模糊等价关系的系统聚类法,但可以得到聚类中心,即各类模式样本,而这往往正是所要求的。因此可用模糊等价关系所得结果作为初始分类,再通过反复迭代法求得更好的结果。
系统聚类法 系统聚类法是基于模糊等价关系的模糊聚类分析法。在经典的聚类分析方法中可用经典等价关系对样本集X进行聚类。设R是 X上的经典等价关系。对X中的两个元素x和y,若xRy或(x,y)∈R,则将x和y并为一类,否则x和y不属于同一类。
相应地,可用X上的模糊等价关系对样本集X进行模糊聚类。设慒是X上的模糊等价关系,是慒 的隶属函数。对于任何α∈[0,1],定义慒 的α截关系
Sα是X上的经典等价关系。根据Sα得到X 的一种聚类,称为在α水平上的聚类。即对于X中的任意两个元素x和y,若,则x和y属于同一类;否则x和y不属于同一类。
应用这种方法,分类的结果与α的取值大小有关。α取值越大,分的类数越多。α小到某一值时,X中的所有样本归并为一类。这种方法的优点在于可按实际需要选取α的值,以便得到恰当的分类。
系统聚类法的步骤如下:
①用数字描述样本的特征。设被聚类的样本集为 X={x1,...,xn}。每个样本均有p种特征,记作xi=(xi1,...,xip);i=1,2,...,n;xip表示描述样本xi的第p个特征的数。 ②规定样本之间的相似系数rij(0≤rij≤1;i,j=1,...,n)。rij描述样本xi与xj之间的差异或相似的程度。rij 越接近于1,表明样本xi与xj之间的差异越小;rij 越接近于0,表明xi与xj之间的差异越大。rij可用主观评定或集体评分的方法规定,也可用公式计算,如采用夹角余弦法、最小最大法、算术平均最小法等。
因为rii=1(xi与自身没有差异),rij=rji(xi与xj之间的差异等同于xj与xi之间的差异),所以由rij(i,j=1,...,n)可得X上的模糊相似关系:
一般,R不具备可传递性,因而R不一定是 X上的模糊等价关系。
③运用合成运算R2=R⋅R(或R4=R2⋅R2等)求出最接近相似关系R的模糊等价关系S=R2(或R4等)。若R已是模糊等价关系,则取S=R。
④选取适当水平α(0≤α≤1),得到X 的一种聚类。
逐步聚类法 逐步聚类法是一种基于模糊划分的模糊聚类分析法。它是预先确定好待分类的样本应分成几类,然后按最优化原则进行再分类,经多次迭代直到分类比较合理为止。
在分类过程中可认为某个样本以某一隶属度隶属于某一类,又以另一隶属度隶属于另一类。这样,样本就不是明确地属于或不属于某一类。若样本集有 n个样本要分成c类,则它的模糊划分矩阵为
此c×n模糊划分矩阵有下列特性:①uij∈[0,1];i=1,...,c;j=1,...,n。②即每一样本属于各类的隶属度之和为1。③即每一类模糊子集都不是空集。
模糊划分矩阵有无穷多个,这种模糊划分矩阵的全体称为模糊划分空间。最优分类的标准是样本与聚类中心的距离平方和最小。因为一个样本是按不同的隶属度属于各类的,所以应同时考虑它与每一类的聚类中心的距离。逐步聚类法需要反复迭代计算,计算工作量很大,要在电子计算机上进行。算出最优模糊划分矩阵后,还必须求得相应的常规划分。此时可将得到的聚类中心存在计算机中,将样本重新逐个输入,去与每个聚类中心进行比较,与哪个聚类中心最接近就属于哪一类。
这种方法要预先知道分类数,如分类数不合理,就重新计算。这就不如运用基于模糊等价关系的系统聚类法,但可以得到聚类中心,即各类模式样本,而这往往正是所要求的。因此可用模糊等价关系所得结果作为初始分类,再通过反复迭代法求得更好的结果。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条