3) springback potential energy principle
回弹势能原理
1.
By the use of weight-residual method on the springback anti-coupled equations, the springback potential energy principle and springback complementary energy principle of the structures of bar systems are established.
应用加权余量法于回弹反耦联方程, 建立了杆系结构的回弹势能原理和回弹余能原理。
2.
The method of springback finite-element for large deflection of plate shaping is established on springback potential energy principle that is already concluded.
通过引入有限变形回弹反耦联系统和反耦联方程的概念,由回弹势能原理建立了板成形的大挠度回弹有限元法。
4) springback complementary energy principle
回弹余能原理
1.
By the use of weight-residual method on the springback anti-coupled equations, the springback potential energy principle and springback complementary energy principle of the structures of bar systems are established.
应用加权余量法于回弹反耦联方程, 建立了杆系结构的回弹势能原理和回弹余能原理。
5) variation principle
变分原理
1.
Application of the variation principle for calculating the force-energy parameters of rail rolling by a universal mill;
应用刚塑性体的变分原理求解钢轨万能轧制过程的力能参数
2.
The calculation of critical load of a compressive bar by direct method based on variation principle;
基于变分原理的直接解法求压杆的临界载荷
3.
Relativistic variation principle and dynamical equations of the rotational variable mass system;
转动变质量系统的相对论性变分原理和动力学方程
6) variational principle
变分原理
1.
The variational principles for the analysis of electro-magneto-elastic material;
压电、压磁耦合弹性介质材料的变分原理
2.
A study of model analysis of anti deformation building based on generalized variational principle;
基于广义变分原理的抗变形房屋模型分析研究
3.
Variational principles and generalized variational principles on flow theory of plasticity;
塑性增量理论的变分原理和广义变分原理
补充资料:弹—塑性变分原理
弹—塑性变分原理
elastic-plastic variational principle
tan一suxing bionfen yuanll弹一塑性变分原理(elastie一plastic variation-al Principle)适于弹一塑性材料的能量泛函的极值理论。包括最小势能原理和最小余能原理。塑性加工力学中常用最小势能原理。变形力学问题的能量解法和有限元解法都基于最小势能原理。最小势能原理有全量理论最小势能原理和增量理论最小势能原理。 全量理论最小势能原理在极值路径(应变比能取极值的路径)下运动许可的位移场u‘中,真实的位移和应变使所对应的总势能取最小,即总势能泛涵巾取最小值,其表达式为”一0,’一万〔A(一,一关一〕dV一好多!一‘“ (l)式中“:为位移;户:为外力已知面上的单位表面力;关为体力;A(气)为应变比能。 A(勒)随材料的模型而异。对应变硬化材料(图a), E严_‘_‘_ A(乓r)一二丁二一气助+{刃(r)dr(2) 6(1一2刃~一“‘J一、-一、- 0式中E,,分别为弹性模量和泊松比;艺一硫瓜,r一掩不万,,,f,一,一音。魔。,,一,一,一音。*。!,;。f,为克罗内克(L.Kroneeker)记号,i=夕时a,一l,i笋少时民,一。,把式(2)代入式(1)便得到卡恰诺夫(几·M·Ka、aHoe)原理x的表达式。i厂:八 I’—几 I’一 ab 乞一乏(r)关系图 a一应变硬化材料;占~理想塑性材料 对于理想塑性材料(图b), 艺~ZGr(r
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条