1) porous foamed materials
通孔泡沫材料
1.
The structure and foaming kinetics of porous foamed materials are related to the fractal structure theory,the theory gives a new way of studying the structure and foaming kinetics of porous foamed materials.
对通孔泡沫材料的孔结构和发泡过程进行了详细的分析 ,同时结合分形结构和分形动力学的相关理论 ,简要分析了二者之间的联系 ,提出了对通孔泡沫结构和孔结构生成过程分析的一个新的途径 。
2) Open-cell foam
开孔泡沫材料
1.
In this paper, a brief review on mechanical models of open-cell foams is given.
开孔泡沫材料主要用于隔音、减振和填充方面,对其力学行为进行理论描述,探讨力学性能与密度及复杂微结构的关系具有十分重要的学术价值和工程意义。
4) open cell material
工孔泡沫材料
5) foam materials
泡沫材料
1.
Preparation of antistatic silicone rubber foam materials;
抗静电硅橡胶泡沫材料的研制
2.
A primary study on fabrication of foam materials with metakaolin;
偏高岭土制备泡沫材料的初步研究
3.
Methods of preparing foam materials, such as aluminium foam, titanium foam, silicon foam and lead foam, and how to control the composition and the porosity in order to prepare materials of different performances were presented.
综述了泡沫铝、泡沫钛、泡沫硅和泡沫铅等材料的制备方法,以及如何控制材料的组成和孔隙率来制备不同性能的材料,重点介绍了这些泡沫材料在汽车工业、人体植入材料、光学材料、微电子、计算机和铅酸电池等方面表现出来的优异性能,并展望其广阔的市场前景。
6) foam
[英][fəʊm] [美][fom]
泡沫材料
1.
Plasticizing and mechanical properties of glycerol plasticized starch foams;
甘油增塑淀粉泡沫材料的塑化性能及力学性能
2.
Preparation of NR-g-(GMA-co-St)/PVC blended foam by chemical cross linking and one-step compression molding;
化学交联模压法制备NR-g-(GMA-co-St)/PVC共混泡沫材料
3.
Foams with these three kind cells are periodic and their cells are also all symmetrical.
在对发泡过程进行假设的基础上,根据泡沫材料微结构的特点,建立开孔和闭孔泡沫材料的简单立方、面心立方和体心立方单胞模型,导出相对密度和胞体结构参数的定量关系。
补充资料:光子选通光谱烧孔光存储材料
光子选通光谱烧孔光存储材料
photogated spectral hole burning optical storage materials
光子选通光谱烧孔光存储材料photogatedsPeetral hole burning oPtieal storage materials当有选通光存在时,利用窄线激光光束,在材料的不均匀增宽吸收线上烧出持久光谱孔,作为二进制数字编码的光盘存储材料。由于增加了频率范畴的烧孔,使原有平面内的烧孔密度进一步扩大。这实际上是一种高密度频域光存储材料。 激光引起的持久光谱烧孔现象在许多有机和无机系统中存在,其中由于光学中心微观环境的不等价效应,引起吸收线的不均匀增宽。在这种情况下,吸收线内特定频率的吸收是与某一等价中心子集相应的。这样,利用一线宽适当窄的可调谐激光束,就能在不均匀线内选择一组吸收与激光频率共振的子集(离子或分子),激发或引起其产生光物理或光化学变化,而由于这种离子的减少,就引起原来不均匀增宽吸收线上相应频率处吸收的减少,形成凹陷,产生了所谓的持久光谱烧孔。 单频激光烧孔(或称单光子烧孔)作为光存储应用时,由于读出光与写入光频率相同,读出时仍有烧孔效应,反复读出后,不可避免地要引起孔的退化和信噪比的降低。 光子选通烧孔不同,其中,烧孔是经过两步过程完成的。第一步是选择激发过程,它保证在不同子集之间不发生相互作用的条件下,通过调谐激光频率,在不均匀增宽吸收线内选择一组离子(分子)子集激发,使之达到某一中间态;第二步是利用频率不同的选通激光,进一步作用于已被激发的离子(或分子),使其产生某种光物理或光化学变化(如光电离、光解离,施主受主电子转移等),由于这部分离子的减少,就在不均匀吸收线上产生了孔,在光存储应用中即表现为信息写入过程。信息的读出,也就是孔的探测过程。这时只须用一与选择激发同样频率范围的可调谐激光器,通过测吸收或激发光谱的方法,在整个不均匀吸收线上,探测有孔或无孔来完成。由于不加选通光,只用一束光探测,从而避免了孔退化和信噪比降低。 通常,光谱孔的频宽△。h近似地为均匀线宽的两倍,△。h一2△。H,在不均匀增宽线上能烧出孔的数目,可由不均匀线宽△。i对孔宽△。h之比(△。l’/△。h)来确定。在液氦温度下,对某些材料可达10“一10‘的量级。这样,对于一束聚焦到1召m直径的光斑点(其平面密度相当于107一10sbit/cm),利用光谱烧孔来存储信息,可将存储密度提高到10‘。bit/cm的量级。 这种烧孔大多在低温下进行。随着温度升高,孔宽增加,存储密度将减小。在一定的温度以上不再能烧孔,或已烧出的孔消失,从而达到擦除的目的。除了这种热擦除以外,低温下的孔主要通过特定波长的光照来擦除,因而被用来做可擦除光存储器件。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条