1) ab initio molecular dynamics
从头算分子动力学模拟
1.
The thermal decomposition mechanisms of 5-Nitro-1-Hydrogen-tetrazole: ab initio molecular dynamics and density function theory study;
5-硝基-1-氢-四唑衍生物热分解机理的从头算分子动力学模拟及密度泛函理论研究
2) ab initio molecular dynamics
从头算分子动力学
1.
The thermal decomposition trajectories of s-tetrazine molecule and its five derivatives were simulated by ab initio molecular dynamics(AIMD) method to acquire the possible decomposition pathways and identify their relative importance.
采用从头算分子动力学方法,对均四嗪分子及其5种衍生物分子的热分解轨迹进行了模拟,获得了它们的各种热分解途径及其难易程度。
2.
Liquid and amorphous Ni64B36 alloys were simulated by ab initio molecular dynamics.
运用从头算分子动力学模拟了液体以及猝冷后形成的非晶态Ni64B36合金体系,得到了它们的对相关函数、结构因子、键对分析方面的结构信息,与实验结果相当一致;结果表明,猝冷得到的合金性质与液体合金性质相似,为非晶态结构。
3.
The periodic boundary conditions structure of polydimethylsiloxane (PDMS) with two repeat units is full optimized using B3LYP/6-31G(d) method and the photodissociation of PDMS is studied using ab initio molecular dynamics (AIMD) method.
文章采用B3LYP/6 31G(d)方法对含有两个重复结构单元的聚二甲基硅氧烷(PDMS)的周期性边界条件的结构模型进行全构型能量优化,在此基础上,采用从头算分子动力学方法研究其光解离过程。
3) Ab-initio molecular dynamics
从头计算分子动力学
1.
This article describes the density-functional theory that is basic theory of ab-initio molecular dynamics simulations.
本文介绍了基于密度泛函理论的从头计算分子动力学的理论基础 ,具体推导了Hatree -Fock方程和Kohn -Sham方程 ,并给出了运用从头计算分子动力学方法进行现代新材料的设计以及计算晶体材料电子结构的流程图 。
4) ab initio molecular dynamics (AIMD)
从头算分子动力学(AIMD)
5) molecular dynamics computer simulation
分子动力学计算机模拟
6) molecular dynamics simulation
分子动力学模拟
1.
Flexible docking by molecular dynamics simulation;
分子动力学模拟的柔性对接(英文)
2.
Structure characters of non-crystalline SrTiO_3 by molecular dynamics simulation;
非晶态SrTiO_3结构特征的分子动力学模拟
3.
Study on the thermodynamic properties of Cu_N nanoclusters by molecular dynamics simulation;
铜原子纳米团簇热力学性质的分子动力学模拟研究
补充资料:分子反应动力学
化学动力学的一个分支,是研究化学反应基元过程分子机理的学科。它用理论物理的方法计算处于某一量子态的分子进行单次碰撞并发生化学反应的几率(或截面)和产物分子的量子态、空间分布及反应速率常数等。这些研究提供了如何控制和利用化学反应的理论依据。例如,为了使吸能反应I+HCl─→HI+Cl能够发生,增加 HCl的振动能比增加其平动能更为有效。它的逆反应
Cl+HI─→HCl+I是一个放能反应,分子反应动力学能够提供产物分子HCl振动态"布居反转"的信息,从而为寻找化学激光工作物质提供了依据。它还能提供反应体系"碰撞对"真实碰撞过程的信息──"碰撞对"是直接反应还是经过一个络合物的反应。
理论计算方法 20世纪30年代,以美国物理化学家H.艾林为代表的学派,用海特勒-伦敦计算H2的方法建立了H+H2反应体系的第一个势能面,借助统计力学方法计算了在该势能面上的热平衡反应速率常数,称为绝对反应速率理论或过渡态理论。
分子反应动力学的理论计算方法分为三部分:①化学反应体系势能面的量子化学计算;②反应截面(或几率)的计算;③由反应截面计算反应速率常数。因此,也可以说分子反应动力学是研究反应体系在热能面上运动过程的学科。在确定的势能面上求解核的运动方程,既可以用经典力学方法,也可以用量子力学方法。
理论 严格的理论是量子力学散射理论。分子反应过程的全部信息包含在波函数中,在给定能量下,求解满足一定渐近条件的薛定谔方程得到波函数,借助入射波和出射波的几率流密度守恒的关系,就可以得到反应截面(或几率)。
以A+BC─→AB+C双分子共线交换反应为例 (共线反应是指反应体系的三个原子沿直线相互接近的反应),该反应体系的坐标系见图1。
在非相对论近似下,反应体系的哈密顿算符H 写作:
式中μA,BC和μBC分别为A和BC,B和C之间相对运动的约化质量;mA、mB、mC分别为原子A、B、C的质量;h为普朗克常数;Vα和Vγ为有效势函数。
核运动的薛定谔方程为:
Hψ=Eψ (3)
渐近条件为:
式中α为反应体系的初始排布,即A+BC;nα或n为BC的内量子数,nα为始态,n为反射态;γ表示终态排布,即C+AB;n为AB分子的内量子数,每一种排布和分子的一组内量子数(如α,nα)称为反应体系的一个通道;kα或kγ为原子与双原子分子相对运动的波数;为双原子分子的内态波函数;称为散射幅。能量守恒条件要求:
(5)
式中啚=h/2π;E 为能量。由入射波和出射波几率流密度守恒的条件,就可以得到由通道(α,nα)到通道(λ,nλ)的反应几率为:
式中v为(λ,nλ)通道中反应体系的相对运动速度。
H+H2(n)─→H2+H共线交换反应几率的数值计算结果见图2。
对于实际的三维化学反应,用上面的方法可以得到反应截面随碰撞能变化的关系。用量子散射理论求反应截面(或几率)的关键是求散射幅,一般是在自然反应坐标中用数值求解耦合微分方程。这是一项十分复杂的计算工作。
当反应体系的质量较大,德布罗意波长很短时,用经典轨迹法或者用准经典轨迹法,即对反应物初态分布和产物终态分布作量子校正的经典轨迹法研究反应体系沿势能面的运动,往往也能得到比较满意的定性或半定量的结果。
展望 由于分子反应动力学的深入发展,对分子反应散射的研究引起了人们极大的兴趣。一方面,分子化学反应的实验研究为化学反应机理的研究提供了详细的信息;另一方面,对反应散射的理论计算,既可以同实验结果互相对比,又可以给予实验结果以清楚的物理解释。例如,对F+H2反应体系的实验和理论研究,发现了产物分子振动态"布居反转"现象,导致了化学激光器的产生,从而推动了态-态反应速率的研究,使分子化学反应动力学发展到态-态分子反应动力学的新阶段。
参考书目
R. D. Levine and R. B. Bernstein,Molecular Reaction Dynamics,Oxford Univ.Press,Oxford,1974.
Cl+HI─→HCl+I是一个放能反应,分子反应动力学能够提供产物分子HCl振动态"布居反转"的信息,从而为寻找化学激光工作物质提供了依据。它还能提供反应体系"碰撞对"真实碰撞过程的信息──"碰撞对"是直接反应还是经过一个络合物的反应。
理论计算方法 20世纪30年代,以美国物理化学家H.艾林为代表的学派,用海特勒-伦敦计算H2的方法建立了H+H2反应体系的第一个势能面,借助统计力学方法计算了在该势能面上的热平衡反应速率常数,称为绝对反应速率理论或过渡态理论。
分子反应动力学的理论计算方法分为三部分:①化学反应体系势能面的量子化学计算;②反应截面(或几率)的计算;③由反应截面计算反应速率常数。因此,也可以说分子反应动力学是研究反应体系在热能面上运动过程的学科。在确定的势能面上求解核的运动方程,既可以用经典力学方法,也可以用量子力学方法。
理论 严格的理论是量子力学散射理论。分子反应过程的全部信息包含在波函数中,在给定能量下,求解满足一定渐近条件的薛定谔方程得到波函数,借助入射波和出射波的几率流密度守恒的关系,就可以得到反应截面(或几率)。
以A+BC─→AB+C双分子共线交换反应为例 (共线反应是指反应体系的三个原子沿直线相互接近的反应),该反应体系的坐标系见图1。
在非相对论近似下,反应体系的哈密顿算符H 写作:
式中μA,BC和μBC分别为A和BC,B和C之间相对运动的约化质量;mA、mB、mC分别为原子A、B、C的质量;h为普朗克常数;Vα和Vγ为有效势函数。
核运动的薛定谔方程为:
Hψ=Eψ (3)
渐近条件为:
式中α为反应体系的初始排布,即A+BC;nα或n为BC的内量子数,nα为始态,n为反射态;γ表示终态排布,即C+AB;n为AB分子的内量子数,每一种排布和分子的一组内量子数(如α,nα)称为反应体系的一个通道;kα或kγ为原子与双原子分子相对运动的波数;为双原子分子的内态波函数;称为散射幅。能量守恒条件要求:
(5)
式中啚=h/2π;E 为能量。由入射波和出射波几率流密度守恒的条件,就可以得到由通道(α,nα)到通道(λ,nλ)的反应几率为:
式中v为(λ,nλ)通道中反应体系的相对运动速度。
H+H2(n)─→H2+H共线交换反应几率的数值计算结果见图2。
对于实际的三维化学反应,用上面的方法可以得到反应截面随碰撞能变化的关系。用量子散射理论求反应截面(或几率)的关键是求散射幅,一般是在自然反应坐标中用数值求解耦合微分方程。这是一项十分复杂的计算工作。
当反应体系的质量较大,德布罗意波长很短时,用经典轨迹法或者用准经典轨迹法,即对反应物初态分布和产物终态分布作量子校正的经典轨迹法研究反应体系沿势能面的运动,往往也能得到比较满意的定性或半定量的结果。
展望 由于分子反应动力学的深入发展,对分子反应散射的研究引起了人们极大的兴趣。一方面,分子化学反应的实验研究为化学反应机理的研究提供了详细的信息;另一方面,对反应散射的理论计算,既可以同实验结果互相对比,又可以给予实验结果以清楚的物理解释。例如,对F+H2反应体系的实验和理论研究,发现了产物分子振动态"布居反转"现象,导致了化学激光器的产生,从而推动了态-态反应速率的研究,使分子化学反应动力学发展到态-态分子反应动力学的新阶段。
参考书目
R. D. Levine and R. B. Bernstein,Molecular Reaction Dynamics,Oxford Univ.Press,Oxford,1974.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条