1) two-and three-dimensional network
二维、三维网络
2) Three-dimensional networks
三维网络
1.
A finite element analysis of current distribution over three-dimensional networks grid and plate in lead-acid batteries is presented.
用有限元方法分析了铅酸蓄电池用三维网络碳化硅板栅和极板内电流的分布。
3) three-dimensional network
三维网络
1.
According to the three-dimensional network computer simulation, A numerical model of probability statistics for distribution of rockmass is established.
首先应用随机不连续面三维网络模拟技术建立不连续的概率模型,在此基础上,搜索出临空面迹线上所有的闭合凸多变形,根据文中提出的“面积判断”法,判断块体是否为有限块体。
2.
The infiltration casting method is used for the preparation of three-dimensional network structure SiC/cast iron composite material in atmospheric pressure.
采用泡沫塑料先驱体挂浆成型法和高温烧结法制备三维网络结构碳化硅陶瓷预制体;并且采用常压铸渗成型工艺制备了一种新型的三维连续网络结构碳化硅/铸铁复合材料;研究了泡沫陶瓷预制体表面不同金属化处理方式和复合材料的热处理工艺对复合材料机械性能的影响;采用金相显微镜等对三维网络结构碳化硅陶瓷预制体和碳化硅/铸铁复合材料的微观形貌特征进行观察和分析,探讨了复合材料微观组织结构与机械性能的关系。
4) 3D network
三维网络
1.
According to the 3D network computer simulation, the numerical model of probability statistics for distribution of discontinuities of rockmasses is established.
根据随机不连续面三维网络计算机模拟技术,建立了岩体不连续面空间分布概率统计数值模型,并在此基础上,应用“有形即是有限”的分析方法可以搜索出所有在临空面上出露的有限块体,确定其空间几何形态和几何参数。
2.
It has been applied to evaluate stability of rock mass,combine with 3D network simulation technique of discontinuities.
然而,由于传统Deere定义的RQD在实际应用中存在很多问题,所以引入了不同阈值下的广义RQD的概念,并与不连续面三维网络模拟技术相结合,应用于岩体的稳定性评价,取得了较好的效果。
补充资料:一维和二维固体
某些固体材料具有很强的各向异性,表现出明显的一维或二维特征,统称为低维固体。其中包括:具有链状结构(例如聚合物TaS3、TTF-TCNQ等)或层状结构(例如石墨夹层、NbS2等)的三维固体;表面或界面层(例如半导体表面的反型层);表面上的吸附层(例如液氦表面上吸附的单电子层,石墨表面上吸附的惰性气体层);薄膜和金属细丝等。按其物理性质这些材料可分为低维导体(例如一维导体TTF-TCNQ,二维导体AsF5的石墨夹层),低维半导体(例如一维的聚乙炔),低维超导体(例如一维的BEDT-TTF、二维的碱金属石墨夹层),低维磁体(例如一维的CsNiF3、二维的CoCl2石墨夹层)等。
当然,由于在链之间或层之间仍存在着一些耦合,这些体系是准一维或准二维的。
近年来低维固体的研究取得了较快的发展,一个原因是许多有应用前景的新材料(例如聚合物、石墨夹层化合物、MOS电路等)具有一、二维的结构,另一个原因是一、二维体系具有三维体系所没有的一些物理特性。
一维导体对于电子-点阵相互作用是不稳定的,在低温下要变为半导体或绝缘体,这称为佩尔斯相变。由此还会形成一种新的元激发──孤子。在相变前能带半满的情形,带电孤子没有自旋,中性孤子有自旋。理论上还预言,在某些情况下孤子的电荷可以是电子电荷的分数倍。
二维电荷系统(半导体表面的反型层或异质结)处于强外磁场中时,随着磁场的变化,霍耳电阻阶跃地变化:n是整数(1980年发现)或有理分数(1982年发现),h是普朗克常数,RH是霍耳系数,e是电子电荷。这称为量子化霍耳效应,其物理原因还正在研究中。三维体系的霍耳电阻随磁场连续变化。
对于短程相互作用的二维体系,在热力学极限下,温度高于绝对零度时不存在长程序,从而也没有与该长程序相对应的相变(例如铁磁-顺磁相变、正常态-超导态相变等)。但是,某些二维体系可发生另一种相变,是由涡旋状的元激发(例如液氦薄膜中的涡旋流线,二维点阵中的位错等)引起的,在低温下正负涡旋相互吸引而形成束缚对,当温度超过某临界温度后,束缚对被热运动所拆散而出现独立运动的涡旋,与此对应的相变过程称为科斯特利兹-索利斯(Kosterlitz-Thouless)相变,简称K-T相变。
1979年在液氦表面所吸附的单电子层中,观察到低密度电子气所形成的六角形电子点阵,证实了E.P.维格纳在30年代的理论预言,它是目前最理想的二维固体。
二维等离子体和三维的也很不一样。对于长波的振荡频率,前者趋向于零,后者趋向于(这里n是电荷密度,m是粒子质量);对于屏蔽后的电势,前者是四极矩势,后者是指数衰减。
当然,由于在链之间或层之间仍存在着一些耦合,这些体系是准一维或准二维的。
近年来低维固体的研究取得了较快的发展,一个原因是许多有应用前景的新材料(例如聚合物、石墨夹层化合物、MOS电路等)具有一、二维的结构,另一个原因是一、二维体系具有三维体系所没有的一些物理特性。
一维导体对于电子-点阵相互作用是不稳定的,在低温下要变为半导体或绝缘体,这称为佩尔斯相变。由此还会形成一种新的元激发──孤子。在相变前能带半满的情形,带电孤子没有自旋,中性孤子有自旋。理论上还预言,在某些情况下孤子的电荷可以是电子电荷的分数倍。
二维电荷系统(半导体表面的反型层或异质结)处于强外磁场中时,随着磁场的变化,霍耳电阻阶跃地变化:n是整数(1980年发现)或有理分数(1982年发现),h是普朗克常数,RH是霍耳系数,e是电子电荷。这称为量子化霍耳效应,其物理原因还正在研究中。三维体系的霍耳电阻随磁场连续变化。
对于短程相互作用的二维体系,在热力学极限下,温度高于绝对零度时不存在长程序,从而也没有与该长程序相对应的相变(例如铁磁-顺磁相变、正常态-超导态相变等)。但是,某些二维体系可发生另一种相变,是由涡旋状的元激发(例如液氦薄膜中的涡旋流线,二维点阵中的位错等)引起的,在低温下正负涡旋相互吸引而形成束缚对,当温度超过某临界温度后,束缚对被热运动所拆散而出现独立运动的涡旋,与此对应的相变过程称为科斯特利兹-索利斯(Kosterlitz-Thouless)相变,简称K-T相变。
1979年在液氦表面所吸附的单电子层中,观察到低密度电子气所形成的六角形电子点阵,证实了E.P.维格纳在30年代的理论预言,它是目前最理想的二维固体。
二维等离子体和三维的也很不一样。对于长波的振荡频率,前者趋向于零,后者趋向于(这里n是电荷密度,m是粒子质量);对于屏蔽后的电势,前者是四极矩势,后者是指数衰减。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条