1) Low energy conformation
能量较低构象
2) The minimum energy conformation
最低能量构象
1.
The minimum energy conformation is found to be different from that calculated by the conventional B3LYP/ 6-311G** method.
首次采用Materialsstudio软件中不同的交换-相关势能函数对N-(1-萘基)-琥珀酰亚胺进行密度泛函理论计算,通过与文献报道的B3LYP/6-311G**常规计算方法进行比较,以及MP2/6-311G**方法进行单点能计算,确认所采用方法计算N-(1-萘基)-琥珀酰亚胺分子最低能量构象更接近整个势能面的全局最小点;振动频率理论分析结果与N-(1-萘基)-琥珀酰亚胺化合物羰基振动双重分裂的红外光谱特征相吻合,表明红外光谱可以作为琥珀酰亚胺类化合物的重要表征方法;根据对N-(1-萘基)-琥珀酰亚胺、萘和萘胺的轨道分布和电荷密度进行理论分析,解释了N-(1-萘基)-琥珀酰亚胺化合物溶液的紫外和荧光的光谱特征,并进而可推断N-(1-萘基)-琥珀酰亚胺分子在溶液中的构象和理论计算得到的真空中最低能量构象相同,其二面角为94。
3) lowest-energy conformation
化合物低能构象
4) lowest energy structures
最低能量结构
1.
Density fuctional theory study of the stability and electronic properties of lowest energy structures for Al_2Be_N(N=1~12) clusters;
Al_2Be_N(N=1-12)团簇最低能量结构的稳定性和电子特性的密度泛函理论研究
2.
First principles study of lowest energy structures and electronic properties of Ge_n B(n=12—19) clusters;
第一性原理对Ge_n B(n=12—19)团簇的最低能量结构及其电子性质的研究
5) energy comparison
能量比较
1.
The first two sections of each frame has been transformed by DWT,energy of detail coefficient of the first two sections has been compared,according to energy comparison and watermark bit,combining the features of HAS,and adopting the .
对每帧的前两节实施小波变换,对前两节精细分量的能量进行比较,根据能量比较及水印比特,结合HAS特性,采用不改变或缩小精细分量能量的方法,在精细分量中嵌入水印。
6) A school of high caliber; an executive of low caliber.
高质量的学校;能力较低的行政官
补充资料:船式构象和椅式构象
按照碳原子具有正四面体构型的学说,环己烷分子中的六个碳原子在键角(109.5°)保持不变的情况下,可以两种不同的空间形式,组成六元环,称为环己烷的船式构象和椅式构象 (图1)。根据现代分子结构理论,由于基团的相互作用的缘故,椅式构象比船式构象稳定得多,常温下环己烷几乎完全是椅式构象。
通过船式构象的纽曼投影式(图2),可以看到碳原子1、2、4、5上相连的氢原子都处在全重叠式的位置上。从船式构象的透视式可以看到碳原子3和6(或称船头和船尾碳原子)上的两个向环内伸展的氢原子相距较近。上述两种情况都使氢原子之间产生较大的斥力,从而产生一种使船式构象扭转为椅式构象的内在力量,这种力称为扭转张力。这是船式构象不稳定的根本原因。在椅式构象中,组成碳环的任何相邻的两个碳原子上的氢,彼此都处在交叉式的位置上(图3),它们之间无扭转张力,比较稳定。
通过船式构象的纽曼投影式(图2),可以看到碳原子1、2、4、5上相连的氢原子都处在全重叠式的位置上。从船式构象的透视式可以看到碳原子3和6(或称船头和船尾碳原子)上的两个向环内伸展的氢原子相距较近。上述两种情况都使氢原子之间产生较大的斥力,从而产生一种使船式构象扭转为椅式构象的内在力量,这种力称为扭转张力。这是船式构象不稳定的根本原因。在椅式构象中,组成碳环的任何相邻的两个碳原子上的氢,彼此都处在交叉式的位置上(图3),它们之间无扭转张力,比较稳定。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条