说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 逐步线性规划法
1)  step by step linear programming method
逐步线性规划法
2)  sequential quadratic programming method
逐步二次规划法
1.
A new way of data fitting and parameter optimization for complex chemical reaction kinetic model was developed based on the integration of numerical analysis and sequential quadratic programming methods, by which not only the weakness of traditional algorithm failing of direct constraint analysis could be overcome, but also the quicker convergence rate and less fitting error could be obtained.
以数值积分和逐步二次规划法的结合为基础,提出了一种新的对复杂反应动力学模型进行数据拟合和参数优化的方法。
3)  Successive linear programming
逐次线性规划
4)  sequential quadratic programming algorithm(SQP)
逐步二次规划法(SQP)
1.
With the gradient formulae,the optimal parameter selection problem can be treated as mathematical programming problem applying sequential quadratic programming algorithm(SQP),and a unified computational approach is given.
文章考虑了一类积微分系统最优参数选择问题,推导出目标函数的梯度计算公式,把最优参数选择问题当成数学规划问题利用逐步二次规划法(SQP)进行数值求解,并给出一致的算法。
5)  SLR process
逐步线性推算法
6)  linear programming method
线性规划法
1.
By taking the minimum cost as optimization aim,the synthetic factor method,minimum cost method,and linear programming method of solving assembled dimensional chains are introduced.
以最低制造成本为优化目标,介绍了求解装配尺寸链的综合因子法、最低成本法和线性规划法,为合理分配装配尺寸链中各环公差提供参考。
2.
Basing on the monochromatic radiative intensity,the inverse problem of radiative transfer equation was solved by least squares method,regularization method and linear programming method.
针对轴对称光学薄火焰,用图像探测器和滤色片获得火焰的单色辐射图像,根据火焰的单色辐射强度,分别采用最小二乘法、正则化方法和线性规划法对辐射传递逆问题进行了求解。
补充资料:线性规划法


线性规划法


【线性规划法】有关资产管理的一个更加复杂的方法是借助于计算机,建立数理模型,应用统计技术进行分析,分析资产负债表和损益表各组成部分间的复杂关系,以便更准确地制定业务经营战略。许多银行采用复杂的数学规划法,其中应用最广的方法是线性规划法。线性规划是选择某一变量目标的数学程序,或是使目标的功能在一组限制条件下实现最大化(或最小化)的工具。 线性规划法的特点是首先要确定管理目标,其次要求明确各种变化因素之间的相互关系,分清哪些是可控制因素,哪些是不可控制因素。最后还要求搞清管理的约束条件,如法定存款准备金等。它力图回答三点内容:问题是什么?有什么解决办法?哪一种最好? 线性规划是显示各决定因素之间关系的数学模型。人们运用各种不同的计算模型来决定可以被决策者控制的最佳因素组合。人们已经设计出复杂的标准计算机程序。然而,为了翻译和评估这些分析结果,银行管理者必须熟知可以用线性规划法解决的问题类型,以及这一程序有关经济发展和银行活动的条件。 线性规划模型的特点是决策者提出一个目标函数,以及一系列的制约条件。因为线性函数只有一个最优解,所以制约条件中必然有些能精确地得到满足,而另一些则只能近似地满足。 每个线性规划模型都是围绕一个目标的最优解而建立起来。这一目标必须是连续的,并且必须能用线性方程表示。最优解可以解释为最低成本或最大利润。如果目标是获取最大利润,一个银行的管理者自然是对可带来利润的投资贷款的组合感兴趣。一个简单的例子可以辩明这一观点。如果一个银行面临的多重选择是短期国债、AAA级公司债、消费信贷、商业信贷以及长期贷款,它们的净收益率(已扣除这些资产的管理费用)分别是5.5%、6%、7 .5%、9肠和10.5%,我们便得到如下的假设等式: P十.055X,十.肠XZ+.ms戈+09凡+.105兀 这里的P代表利润,X代表各种可选择类型的贷款额或投资额,在这个例子中,目标函数P是最大值即最大利润。如果不考虑风险性或流动性因素,那么把所有可运用的资金用于长期贷款上(凡),将获得最大收益仁ro.5%)。但显然这是不可能的,因为银行客户需要有各种服务,无论在惯例上,风险程度_L,还是政府规定上,都是禁止银行如此高度集中地使用资金的。 线性规划模型的另一个特性是制约条件,它们以法律和常规为基础。有些需要在管理止作出判断,另一些,例如准备金要求,则是具有明确具体的规定。另外,有些条件如准备金,可以很容易地加以控制,因为它是在各类存款中提出的一定资金比例的总和。而另一些,诸如抵押贷款和其他贷款的资金保证,则不能很准确地预测或估计出来。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条