1) precision-bias analysis
精密度-偏性分析
2) Precision bias analysis
精密度偏性分析
3) precision-bias and analysis quality control experiment
精密度-偏性分析质控试验
4) analytic precision
分析精密度
5) precision bias experiment
精密度偏性实验
1.
The paper points out environmental requirement of functional chamber and analyzes in detail the process of monitoring total nitrogen by precision bias experiment to monitor total nitrogen by alkaline potassium persulfate.
通过碱性过硫酸钾法测定总氮的精密度偏性实验及其结果分析,提出测定总氮的过程中应注意功能室的环境要求及一些细小的分析细节,并提出相应的建议。
6) Duplicate analysis precision
双样分析精密度
补充资料:精密分析核电子仪器
利用核辐射和核电子仪器可对各种试样作能谱测量,从而确定样品中的微量成分,这类仪器统称为精密分析核电子仪器。
多道谱仪 由辐射探测器、核电子学信号处理电路和多道分析器组成,用于测量核辐射谱(能谱、时间谱等)的系统。常按所用探测器命名,例如,使用闪烁探测器的称为闪烁谱仪;使用硅锂探测器、锗锂探测器和高纯锗探测器(见半导体探测器)的分别称为硅锂谱仪、锗锂谱仪和高纯锗谱仪。有的也按所测辐射命名,如X射线谱仪和正电子谱仪等。各种利用电子计算机的谱仪,都配有谱处理程序和放射性核素数据库,能自动识别放射性核素并确定其含量。
正电子谱仪 某些放射性核素(如22Na)发射的正电子和被测样品中的负电子相遇时发生湮没,绝大多数情况下转化为两个能量近于511千电子伏的光子,它们向相反方向辐射,其夹角近于180°。正电子从产生到湮没的时间决定了正电子寿命,约为数百皮秒。正电子寿命、两个辐射光子的能量分布和夹角等参数,都与被测物质的许多特性──如晶格缺陷、物质相变、物质的电子结构等──有关。正电子寿命可用响应速度快的探测器和定时电路测定;光子的能量分布可用高能量分辨率多道谱仪测量;光子间的夹角可用位置灵敏探测器确定。测量上述参数的各种谱仪统称为正电子谱仪。
X 射线荧光分析仪 利用一定能量的光子或带电粒子轰击样品,激发样品中的原子产生特征X射线,其能谱由多道谱仪(近代的分析仪多用硅锂谱仪,有的工业分析仪采用单道谱仪)测量。通过分析所测谱中各特征 X射线的能量和强度,即可确定样品中极微量元素的成分和含量。X射线荧光分析仪广泛用于材料成分分析、环境样品分析、考古分析和刑事侦察等方面。
多道谱仪 由辐射探测器、核电子学信号处理电路和多道分析器组成,用于测量核辐射谱(能谱、时间谱等)的系统。常按所用探测器命名,例如,使用闪烁探测器的称为闪烁谱仪;使用硅锂探测器、锗锂探测器和高纯锗探测器(见半导体探测器)的分别称为硅锂谱仪、锗锂谱仪和高纯锗谱仪。有的也按所测辐射命名,如X射线谱仪和正电子谱仪等。各种利用电子计算机的谱仪,都配有谱处理程序和放射性核素数据库,能自动识别放射性核素并确定其含量。
正电子谱仪 某些放射性核素(如22Na)发射的正电子和被测样品中的负电子相遇时发生湮没,绝大多数情况下转化为两个能量近于511千电子伏的光子,它们向相反方向辐射,其夹角近于180°。正电子从产生到湮没的时间决定了正电子寿命,约为数百皮秒。正电子寿命、两个辐射光子的能量分布和夹角等参数,都与被测物质的许多特性──如晶格缺陷、物质相变、物质的电子结构等──有关。正电子寿命可用响应速度快的探测器和定时电路测定;光子的能量分布可用高能量分辨率多道谱仪测量;光子间的夹角可用位置灵敏探测器确定。测量上述参数的各种谱仪统称为正电子谱仪。
X 射线荧光分析仪 利用一定能量的光子或带电粒子轰击样品,激发样品中的原子产生特征X射线,其能谱由多道谱仪(近代的分析仪多用硅锂谱仪,有的工业分析仪采用单道谱仪)测量。通过分析所测谱中各特征 X射线的能量和强度,即可确定样品中极微量元素的成分和含量。X射线荧光分析仪广泛用于材料成分分析、环境样品分析、考古分析和刑事侦察等方面。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条