1) multi-position progressive di e
多工位连续模
2) multi-position continuous punching die
多工位连续冲压模
3) continuous multiligand distribution model
多点位连续分布模型
5) production processes with multiple technological indices
多指标连续工序
6) displacement discontinuity model
位移不连续模型
1.
Without the loading-rate effect considered, the improved constitutive relationship is extended to be under the dynamic condition, and then a nonlinear displacement discontinuity model for normally incident P-wave propagation across a dry fracture is established in an elastic half-space.
在不考虑加载速率对节理变形行为影响的情况下,将该本构关系推广至动态条件,建立了法向入射纵波在弹性半无限空间中干性单节理处传播的位移不连续模型,基于Lemaitre假设获得了节理透、反射系数TIMP和RIMP的近似解析解;同时结合一维波动方程特征线法推导了节理透、反射波质点速度时域数值差分格式并自编了计算程序,进而得到TIMP、RIMP、透、反射波能量etra和eref、延迟时间Tdel的半数值解,依此研究弹性纵波在单节理处的传播过程及特征。
补充资料:连续模
刻画函数的连续性的一种尺度。假设??(x)是定义在闭区间[α,b]上的连续函数,称
为??的连续模。ω(??,δ)是在 [0,l]上有定义的函数(l=b-α),并且有如下性质:①当 δ→0时,ω(??,δ)→0;②ω(??,δ)是非负增函数;③ω(??,δ)是半可加的,也即对于;④ω(??,δ)是δ的连续函数;⑤对于自然数n, 当0≤nδ≤l时,有ω(??,nδ)≤nω(??,δ),对于非整数λ>0,当0≤λδ≤l时,有ω(??,λδ)≤(λ+1)ω(??,δ)。将ω(??,δ)看作连续函数空间上的泛函,则它具有半范数的性质,也即满足。连续模不可能太小, 对于δ→0,若,则??是个常数,从而ω(??,δ)恒等于零。
连续模的性质①②和③是本质的,倘若定义在[0,l]上的函数ω(δ)满足这三个性质,则它必然是[α,b]上的某个连续函数的连续模。故常称具有性质①②和③的函数为连续模函数。
如果对于任意的x,y∈[α,b]和α≥0,β≥0,α+β=1,函数g(x)满足不等式α(g(x)+βg(y)≤g(αx+βy),则称g在[α,b]上是凹(上凸)的。如果在[0,l]上满足ω(0)=0的连续的增函数 ω(x)是凹(上凸)的,则它必然是连续模函数。当然,连续模未必是凹的,但是,对于每个连续模函数 ω(x)(0≤x≤l),都存在凹的连续模函数ω1(x)使得
ω(x)≤ω1(x)≤2ω(x) (0≤x≤l)。
作为连续模的直接推广是光滑模。设r是自然数,对于[α,b]上的连续函数??(x),称为??的r阶光滑模,其主要性质是,对于λ>0,有
。若??有r阶连续导数,则 式中сr与с是与??及δ无关的正数。
为??的连续模。ω(??,δ)是在 [0,l]上有定义的函数(l=b-α),并且有如下性质:①当 δ→0时,ω(??,δ)→0;②ω(??,δ)是非负增函数;③ω(??,δ)是半可加的,也即对于;④ω(??,δ)是δ的连续函数;⑤对于自然数n, 当0≤nδ≤l时,有ω(??,nδ)≤nω(??,δ),对于非整数λ>0,当0≤λδ≤l时,有ω(??,λδ)≤(λ+1)ω(??,δ)。将ω(??,δ)看作连续函数空间上的泛函,则它具有半范数的性质,也即满足。连续模不可能太小, 对于δ→0,若,则??是个常数,从而ω(??,δ)恒等于零。
连续模的性质①②和③是本质的,倘若定义在[0,l]上的函数ω(δ)满足这三个性质,则它必然是[α,b]上的某个连续函数的连续模。故常称具有性质①②和③的函数为连续模函数。
如果对于任意的x,y∈[α,b]和α≥0,β≥0,α+β=1,函数g(x)满足不等式α(g(x)+βg(y)≤g(αx+βy),则称g在[α,b]上是凹(上凸)的。如果在[0,l]上满足ω(0)=0的连续的增函数 ω(x)是凹(上凸)的,则它必然是连续模函数。当然,连续模未必是凹的,但是,对于每个连续模函数 ω(x)(0≤x≤l),都存在凹的连续模函数ω1(x)使得
ω(x)≤ω1(x)≤2ω(x) (0≤x≤l)。
作为连续模的直接推广是光滑模。设r是自然数,对于[α,b]上的连续函数??(x),称为??的r阶光滑模,其主要性质是,对于λ>0,有
。若??有r阶连续导数,则 式中сr与с是与??及δ无关的正数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条