说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> REES系统
1)  REES system
REES系统
1.
In order to exactly analyze and predict the safety of the gas accident in the diggings REES system,firstly the rough set theory is used to model the accident analysis in the REES system,and the analysis process and steps are given out.
瓦斯事故是煤矿经常发生的事故,在矿区REES系统中应对其有准确的分析与预测,采用了Rough Set理论对矿区REES系统中事故分析进行了建模,给出了分析步骤与流程,然后利用作业评价法评价矿井中煤与瓦斯突出分类等级,最后利用Rough Set理论建立煤与瓦斯的决策表,求得其约减,提取决策规则,对规则进行了分析,用于指导煤矿开采。
2)  REES index system
REES指标体系
1.
Based on the concept of system science and harmonious development outlook,an REES index system and an integrative assessment model were established,by which the integrative assessment values were obtained for the ecologically sustainable development of Neijiang city in 2000-2004.
运用系统科学和协调发展观建立REES指标体系和综合评价模型,计算获得2000-2004年内江市生态可持续发展综合评价值,采用2维4象限法,对内江市生态可持续发展水平和协调性进行了评价,并对其可持续发展关键制约因素进行了分析。
3)  REES structural model
REES构型
1.
The REES structural model is a theoretical model for the resources_environment_economy_society evaluation system.
REES构型是以资源 (R) -环境 (E) -经济 (E) -社会 (S)问题构建的理论模型 ,非传统矿业评价是非传统矿产资源理论在矿业评价领域内的应用 。
4)  Otway-Rees protocol
Otway-Rees协议
1.
It shows the syntax and the semantic of SG logic in a great detail, finds the fault of Otway-Rees protocol, and gives a method to improve it.
该文介绍了一种分析密码协议并行攻击和重放攻击的逻辑方法——SG逻辑,应用它对改进版的Otway-Rees协议进行了分析,找出了BAN类逻辑所不能分析出来的缺陷,针对该缺陷给出了协议的进一步改进,并推证了改进后的协议对SG逻辑的分析是安全的。
5)  Rees congruences
Rees同余
6)  Rees matrix
Rees矩阵
1.
Abtract: This paper first gives a new characterization of proper congruences on a completely 0-simple semigroup with normal Rees matrix representation S = M0 [G;I,Λ;P].
文章对有正规Rees矩阵表示的完全0-单半群上的真同余给出了一个新刻画,证明了完全0-单半群的任一真同态像仍为完全0-单半群,并且利用Rees矩阵给出了完全0-单半群的真同态像的结构。
补充资料:Rees矩阵型半群


Rees矩阵型半群
Rees semi-group of matrix type

R吧矩阵型半群【R昭胭城一gr.lpof叮Iatri旅仃伴;P知e。砚翔"。月犷p邓Ila Ma印11明oro硼a] 按下法定义的一种半群结构.设S为任意一个半群(semi一group),I,A为两个(指标)集合,而p二(尸*,)为S上一个(Axl)矩阵,即由众scartes积A xl到S内的一映射.下列公式定义了集合M‘Ixsx人上的一种运算: (i,s,又)口,t,群)=(i,、户,,t,井)·则M是一半群,称为S上的Rees矩阵型半群并记作‘了(S;I,A;尸);矩阵尸称为才(义I,A;P)的夹层矩阵(sa记wich matrix).若S为带零元O的半群,则Z二{(i,o,又):i任I,又任A}是M=/(S;I,怂尸)中的理想而R。乏商半群(见半群(s蒯-脚uP))M/Z记作/o(S;I,A;P);此时若S二G。为带零元的群,则用符号‘才“(G;I,A;尸)代替了”(G”;I,A;尸)并称为带零元的群G0上的Rees矩阵型半群.群G称为半群.才(G;I,A梦尸)和了‘,(G:I,A;p)的结构群(struct切旧g心up)· 在带零元的罕凑,s士的有夹层(A、I)矩阵尸的矩阵型R曰荡半群也可由下法构造.5上的(1 xA)矩阵称为R日留矩阵(Reesrr坦trix),如果它只包含至多1个非零元.设}!all‘*表示S上的Rees矩阵.其第i行第又个元素为a而其余元素为零.在S上全部(I xA)Rees矩阵的集合上定义运算: A oB二APB,(l)其中右端为“通常”的矩阵乘积.于是上述集合在这一乘法下成为一半群.映射{al},,,巨(i,a,劝为这一半群和半群才。(S;I,A;尸)之间的同构.记号.才“(s;I,A;p)于是可以用于这两个半群.公式(l)解释了尸称为“夹层矩阵”的原因.若G为一个群,则半群‘才“(G;I,人;尸)为正则的,当且仅当矩阵P的每行每列中包含一个非零元;任意半群才(G;I,A;尸)是完全单的(见完全单半群(completelys如-ple~一911〕叩)),任意正则半群(比酬肚sell五~grouP)尸(G;I,A;尸)是完全O单的.上面两个结论的逆命题给出了腼宇理(R。滔tllco~)“11)的主要内容:任何完全单的(完全O单的)半群可以同构地表示成为群上的Rees矩阵型半群(相应地,表示成为一附带零元的群上的正则的Rees矩阵型半群).若.才‘,(G;I,A;P)和了。(G‘;I‘,A‘;P‘)是同构的,则群G和G’是同构的,I和I‘有相同的基数且A和A’有相同的基数.半群.才“(G;I,A;尸)和了“(G‘;I‘;A’;尸‘)同构的一些必要充分条件已经知道,除去刚刚提到的条件外,它们还要包含夹层矩阵P和P‘之间的一个十分确切的关系(见tl]一〔31).特别地,任意的完全0单半群可以同构地表示成一个Rees矩阵型半群,而在其夹层矩阵的一给定的行和给定的列中,每个元素不是为O就是为结构群中的单位元;这种夹层矩阵称为正规化的(加rn刘j左沮).同样的性质对完全单半群也成立.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条