1) The tolerance triangle
公差三角形
2) error triangle
误差三角形
1.
The geometric midlines of error triangles or gaps between Tresca and Twin shear stress yield loci on π -plane were linked up together to form a third yield locus which reflects a new yield criterion called GM(geometric midline) yield criterion in Haigh Westergaard stress space.
在π平面上,取Tresca屈服轨迹与双剪应力屈服轨迹之间误差三角形的几何中线确定新的屈服轨迹,建立了该轨迹在HaighWestergaard应力空间上的应力方程,称此方程为几何中线屈服方程或简称GM屈服准则·证明了单位塑性功率表达式及其对Mises圆的逼近精度·精度分析与算例表明该准则与Mises准则的最大误差不超过2 9%,平均误差仅为0 95%,比MY(平均屈服)准则的逼近精度提高1%,且它是线性的,其轨迹为与Mises屈服轨迹相交的等边非等角十二边形·该准则的单位体积塑性功率表达式也是线性的
3) parallactic triangle
视差三角形
4) Color-difference triangular
色差三角形
5) triangle inequality
三角形公理
6) Inner Angle Difference of Triangle
三角形内角差
补充资料:星形-三角形变换
一种简单的电路间等效变换。 以阻抗为参数的3个电路元件的星形连接如图1所示, 三角形连接如图2所示。当这两种连接有相同的外特征时,二者便可等效互换。互换的规则是:将星形连接变换成三角形连接,要求后者的参数与前者的参数之间有如下的关系,即 (1)
反之,将三角形连接变换成星形连接,则需要
(2)
当Z1=Z2=Z3=Z时,式(1)简化为Z12=Z23=Z31=3ZZ12=Z23=Z31=Z 时,式(2)简化为式(1)和式(2)称为两种连接间的互换公式。
反之,将三角形连接变换成星形连接,则需要
(2)
当Z1=Z2=Z3=Z时,式(1)简化为Z12=Z23=Z31=3ZZ12=Z23=Z31=Z 时,式(2)简化为式(1)和式(2)称为两种连接间的互换公式。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条