说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Ti0.8Zr0.2V1.6Mn0.8Ni0.6贮氢合金
1)  Ti0.8Zr0.2V1.6Mn0.8Ni0.6 hydrogen storage alloy
Ti0.8Zr0.2V1.6Mn0.8Ni0.6贮氢合金
2)  hydrogen storage alloy
贮氢合金
1.
Effect of annealing on electrochemical performance of La_(0.75)Mg_(0.25)Ni_(3.5)Co_(0.4) hydrogen storage alloy;
退火对La_(0.75)Mg_(0.25)Ni_(3.5)Co_(0.4)贮氢合金电化学性能的影响
2.
The effects of partial substitution of MI on phase structures and properties of low Co hydrogen storage alloy;
Dy替代M1对低钴贮氢合金组织和性能的影响
3.
Crystal structure and electrochemical properties of La(Ni,Sn)_(5+x)(x=0~0.35) hydrogen storage alloys;
La(Ni,Sn)_(5+x)(x=0~0.35)贮氢合金的晶体结构与电化学性能
3)  hydrogen storage alloys
贮氢合金
1.
A study on the structure and electrochemical properties of La_(0.67)Mg_(0.33)Ni_(3.0-x)Al_x(x=0,0.1,0.2,0.3) hydrogen storage alloys;
La_(0.67)Mg_(0.33)Ni_(3.0-x)Al_x(x=0~0.3)贮氢合金的相结构及电化学性能的研究
2.
Microstructure and electrochemical properties of AB_5 type hydrogen storage alloys prepared by gas atomizing;
气体雾化AB_5型贮氢合金微观结构特征及电化学性能
3.
The effects of two-step heat treatment on properties of hydrogen storage alloys electrode;
两段热处理对贮氢合金电极性能的影响
4)  hydrogen-storage alloy
贮氢合金
1.
Study of copper-microencapsulated hydrogen-storage alloy electrode;
微包覆铜贮氢合金电极的研究
2.
The selective hydrogenation of carbon-carbon double bonds in acrylonitrile-butadiene rubber (NBR) solution was investigated, with the intermetallic hydrides forming from hydrogen-storage alloys LaNi 5,LaNi 4.
采用贮氢合金LaNi5、LaNi4。
3.
The electrochemistry behavior of magnesium electrode, magnesium sacrificial anode material, the Mg-based hydrogen-storage alloy electrode material, the magnesium solid state battery, the magnesium storage battery, the magnesium air battery and rechargeable magnesium battery were discussed in the paper.
评述讨论了镁电极的电化学行为,镁牺牲阳极材料、镁基贮氢合金电极材料、镁固态电池、镁储备电池、镁空气电池以及镁二次电池等方面的应用研究现状和发展趋势。
5)  La2Mg0.9Ni7.5Co1.5Al0.1 hydrogen storage alloy
La2Mg0.9Ni7.5Co1.5Al0.1贮氢合金
6)  bcc hydrogen storage alloy
bcc贮氢合金
补充资料:钛铁贮氢合金
分子式:
CAS号:

性质:一种性能优良、成本低廉的贮氢材料。它吸氢量大,含氢重量比为1.8%,吸放氢迅速,这些优点对其应用十分有利。不足之处是活化困难,须加热到250℃以上作反复的充氢——抽空操作,另外抗中毒能力差。这些缺点可以通过Mn、Co等合金化加以改善。TiFe合金已在氢的贮存净化、氢压机等领域获得应用。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条