1) sandwich cylindrical cavity
夹层圆柱腔体
1.
With the combination of electrorheological fluid and a sandwich cylindrical cavity, the dynamic and acoustic characteristics, as well as the change of the structural responses, of a sandwich structure while being excited by high frequency noise inside are studied experimentally in this paper.
采用电流变流体(ERF),结合工程实际中常见的隔声腔体结构,通过实验研究了高频声激励作用下含电流变材料夹层圆柱腔体的声振响应特性及其变化。
2) sandwich cylindrical shell
夹层圆柱壳
1.
In the paper,the sound and structural vibration isolating performances of a sandwich cylindrical shell embedded with self-made electro-rheological fluid (ERF) material are studied experimentally under the condition of sound excitation.
本文选用自行配制的硅油基纳米硅粉和淀粉电流变液 (ERF) ,对灌注电流变液的夹层圆柱壳体的隔声性能及声激励结构响应进行了实验研究 ,对不同电流变液在外加电场下的流变现象进行了定性分析和比较 ,分析了外加电场对电流变液夹层圆柱壳体的声和振动的控制效果。
2.
A study was carried out to analyze the nonlinear buckling problem of sandwich cylindrical shell containing axisymmetric shape initial imperfection under axial compression.
夹层圆柱壳具有很高的结构效能,在许多工程结构中被广泛采用。
3) Sandwich cylindricall curved plates
夹层圆柱曲板
4) filler cylindricall shell structure
夹层圆柱壳结构
5) three-dimensional cylindrical cavity body
三维圆柱腔体
1.
By employing a method combining spatial analytical geometry theory with numerical calculations a radiation discrete transfer method(DTM) was implemented for the radiation heat transfer calculations in a three-dimensional cylindrical cavity body.
运用空间解析几何理论与数值计算相结合的方法,实现了辐射离散传播法(DTM)在三维圆柱腔体内辐射传热计算的应用。
6) Cylindrical resonant cavity
圆柱形谐振腔体
补充资料:横向磁场中的空心超导圆柱体(hollowsuperconductingcylinderinatransversalmagneticfield)
横向磁场中的空心超导圆柱体(hollowsuperconductingcylinderinatransversalmagneticfield)
垂直于柱轴(横向)磁场H0中的空心超导长圆柱体就其磁性质讲是单连通超导体。徐龙道和Zharkov由GL理论给出中空部分的磁场强度H1和样品单位长度磁矩M的完整解式,而在`\zeta_1\gt\gt1`和$\Delta\gt\gt1$条件下为:
$H_1=\frac{4H_0}{\zeta_1}sqrt{\frac{\zeta_2}{\zeta_1}}e^{-Delta}$
$M=-\frac{H_0}{2}r_2^2(1-\frac{2}{\zeta_2})$
这里r1和r2分别为空心柱体的内、外半径,d=r2-r1为柱壁厚度,ζ=r/δ(r1≤r≤r2),Δ=d/δ,δ=δ0/ψ,δ0为大样品弱磁场穿透深度,ψ是有序参量。显然此时H1→0,M→-H0r22/2,样品可用作磁屏蔽体。当$\zeta_1\gt\gt1$,$\Delta\lt\lt1$时,则
H1=H0/(1 ζ1Δ/2),
M=-H0r23[1-(1 ζ1Δ/2)-1]。
若$\zeta_1\Delta\gt\gt1$,则$H_1\lt\ltH_0$或H1≈0。所以,虽然$d\lt\lt\delta$,但磁场几乎为薄壁所屏蔽而难于透入空心,称ζ1Δ/2为横向磁场中空心长圆柱体的屏蔽因子。当$\zeta_1\Delta\lt\lt1$时,则H1≈H0,磁场穿透薄壁而均进入空腔,失去屏蔽作用,此时M≈0。类似于实心小样品,由GL理论可求出薄壁样品的临界磁场HK1,HK,HK2和临界尺寸等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条