1) connected component
连通分支
1.
The concepts of connected unascertained subset, the connectedness of unascertained topological space and connected component are introduced and some related theorems obtained.
给出连通未确知子集的定义和相关的定理 ;未确知拓扑空间连通性的定义和定理 ,以及连通分支的定义、定
2.
Moreover,propertities of connected pre-topology Spaces,including K Fan s Theorem,and properties of connected components of pre-topology Spaces are studied in detail.
本文定义了预拓扑空间的连通性并给出了它的若干等价刻画,讨论了连通性的一些性质,得出了预拓扑空间的连通性是连续不变性质,最后定义了连通分支,并研究了它的一些性质(包括樊畿定理)。
3.
This paper give a method of judging whether addition of edge make up cycles by giving every vertex a connected component No.
通过给网络G的每一个顶点赋予一个所在连通分支编号的方法 ,来判定每条边的加入是否构成圈 ,讨论了Kruskal算法中判定圈的新途径 ,给出了Kruskal算法的一种新的实现方
2) component
[英][kəm'pəʊnənt] [美][kəm'ponənt]
连通分支
1.
On Components and Quasi-components;
拓朴空间的连通分支与拟分支
2.
R_m-edge cut is such an edge cut that separates a connected graph into a disconnected one with no component having order less than m.
Rm-边割是指能将阶不小于2m的连通图G分割为各连通分支的阶都不小于m的边割,其中m取正整数,文章证明了对阶为v的连通图G,若G的直径D(G)=2,且最大度Δ≤v-2,则对于任意的m≤v2,G存在Rm-边割。
3.
In this paper,the size and the structure of component of graphs are studied,and some results are obtained.
通过对图的连通分支的大小以及结构进行探讨,得到了若干新的结果。
3) connected components
连通分支
1.
Algorithm for clustering gene expression data using connected components;
利用连通分支对基因表示数据的聚类算法
2.
This paper presents a new clustering method based on connected components that is to resolve the categorized problems of tanks status in industry production of aluminum electrolysis.
提出了一种基于连通分支的聚类分析算法,用以解决铝电解工业生产中槽况的分类问题。
3.
Moreover,propertities of connected matroids,including K Fan\'s theorem,and properties of connected components of matroids are studied in detail.
定义了拟阵的一种连通性,讨论了它与已有拟阵连通性之间的关系,并详细地研究了连通拟阵和连通分支的性质,包括樊畿定理。
4) Connected Branch
连通分支
1.
An inequation about vertex degree and connected branches of a simple graph from which a vertex is erased is proofed in this paper.
证明了在无向简单图中删除顶点后连通分支数与被删除顶点度数之间的一个不等式关系。
5) continua
[英][kən'tinjuə] [美][kən'tɪnjʊə]
连通分支
1.
Behaviour of continua of the solution set of both operator equations and scalar boundary value problems are obtained, which partially answered an open problem of Ambrosetti(1994).
证明了解集存在连通分支。
6) number of connected component
连通分支数
1.
Let n(G) and diam(Γ(G)) be the number of connected components and the diameter of Γ(G),respectively.
令n(G)和diam(Γ(G))分别表示Γ(G)的连通分支数和直径,证明了对任意有限群G,n(G)≤6和diam(Γ(G))≤6。
补充资料:单位元的连通分支
单位元的连通分支
connected component of the identity
连通分支,又例如伪止交么模群50印,q)能看作是连通复代数群Sq、(C)的实点构成之群,当p二0或q=0时,它是连通的,当p,q>0时,它分裂成两个连通的分支.然而,场Lie群G皿)是紧Lie群时,G。(R)是连通的单位元的连通分支t以..ed比d~侧瀚ept of theide时ty;eu”3皿.~喂“仆e汉职.叫目],单位元分支(identity。。rnponent),群G的 拓扑群(或代数群)G的包含此群的单位元的最大连通子集G“.分支G“是G的闭正规子群;G的关于G“的陪集就是G的连通分支,商群G/G”是完全不连通和Hausdorff的,且在G的所有使G/H完全不连通的正规子群H中,G“是最小的.如果G局部连通(例如,G为琉群),则G“在G中是开的,且G/G“是离散的. 对任意代数群G来说,单位分支也是开的,且它有有限指数;G”还是G中具有有限指数的极小闭子群.代数群的连通分支和不可约分支相同.对代数群G的任一多项式同态价,我们有中(Go)=仲(G))“.如果G是一域上代数群,则G“仍定义在此域上. 若G为复数域C上代数群,则它的单位分支G”和它作为复Lie群的单位分支相同.若G为实数域R上的群,则G“中实点构成之群G气R)按Lie群G(R)的拓扑它不一定连通,然而它的连通分支数有限.例如,虽然GL。们是连通的,可是GL。仅)分裂成两个
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条