1) electrokinetic potential (ζpotential)
电动电势(ζ电势)
2) Zeta potential
ζ电势
1.
The influences of petroleum sulfonate and partially hydrolyzed polyacrylamide(HPAM) on the zeta potential and structure of Na-montmorillonite were investigated by zeta potential analysis and X-ray diffraction(XRD) of Na-montmorillonite under different conditions.
利用电势分析仪分析了石油磺酸盐及部分水解聚丙烯酰胺(HPAM)对钠型蒙脱土ζ电势的影响,采用X射线衍射(XRD)测定了钠型蒙脱土于石油磺酸盐、HPAM溶液中结构的变化。
2.
The oil-water zeta potentials of crude oil active components,asphaltene,from Liaohe Shuguang oilfields were investigated.
从分子沉积(MD)膜驱剂与原油活性组分沥青质模型油的ζ电势出发,考察了水相pH、MD膜驱剂质量浓度、盐浓度、沥青质质量浓度、芳香度等对水包模型油乳状液的ζ电势的影响,并进一步探讨了水包油乳状液的稳定性。
3.
The effects of electric field strength,zeta potential,electrolyte concentration,fluid temperature,and micro triangle.
提出了微小三角形槽道内电渗流动理论计算方法,通过Galerkin法计算并分析了其内部的电势及速度分布,获得了温度、槽道尺寸、外加电势的电场强度、ζ电势以及电解质浓度对微小三角形槽道内电渗流动的影响规律。
3) electrokinetic potential
电动电势
4) electrokinetic potential
电动势,动电势
5) electrokinetic potential
动电势,Z电势
6) back electromotive force
反电动势
1.
Calculation and simulation of back electromotive force and cogging torque for permanent magnet BLDC motor;
永磁无刷直流电动机反电动势及定位力矩的计算与仿真
2.
Back electromotive force was measured by continuous pulse-computer and the influencing factors for back electromotive force and current efficiency were studied in detail.
研究了在SrCl2-SrF2-BaF2的电解质体系中熔盐电解法制备高浓度Al-Sr合金,采用连续脉冲-计算机法测定电解过程的反电动势并且对反电动势和电流效率的影响因素进行了详细的研究。
3.
This method directly extracts the true back electromotive force(EMF) zero-crossing point by detecting the voltage difference between the floating phase terminal and the midpoint in the DC link.
为了实现无刷直流电机的无位置传感器控制,提出了一种新颖的转子位置信号检测方法,该方法通过比较逆变器直流环中点电压和电机断开相绕组端电压的关系,直接检测到断开相绕组反电动势的过零点,再将该过零点延迟30°电角度即可获得无刷直流电机绕组换相所必须的转子位置信号。
补充资料:扩散超电势
由于电活性物种的扩散速度缓慢,使电极附近溶液的浓度与溶液本体的浓度不同而引起的超电势。物质在液相中的传递有三种形式:①迁移,这是电场引起的带电物种的传递过程,通过在电解液中加入过量的非电极活性的"无关电解质",电极活性物质的迁移可以得到抑制;②对流,这是溶液本身的流动引起的物质传递过程, 对流过程可利用转盘电极精确控制(见稳态技术);③扩散,这是溶液中存在浓差而引起的物质传递过程,是这里要讨论的主题。
对于电极反应,现考虑Ag+的电沉积过程:
Ag++e─→Ag (1)它的迁越步骤交换速率很快,即交换电流密度I0很大,故要求的推动力很小,因此迁越超电势ηCT→0。在过量的"无关电解质"存在的条件下,电极的电流I完全靠Ag+的扩散步骤来支持(图1),即决定于Ag+到达金属相表面的扩散通量ФAg+。
根据法拉第电解定律和斐克第一定律(见扩散),可得下式:
(2)
式(2)的负号表示还原电流有负值,D为扩散系数,F为法拉第常数。为了找出界面的浓度梯度дc/дx,W.H.能斯脱于1904年提出了一个近似的假设,即在电极的液相界面上存在着有效扩散层,它的厚度为δ(约10~100微米)。在该层的内部,浓度梯度是线性的(图 2);在该层之外,Ag+的浓度与溶液本体浓度cb一样。能斯脱的上述模型虽与实际不尽相符,但使问题的处理大为简化,且所得结果与比较严格的处理相差不大。这样,式(2)可简化为:
(3)
式中的cS表示Ag+在金属表面的浓度。
当上述电极极化增大时,电流增加使金属表面Ag+的沉积加速,最终 cS将降到零,产生极限电流。此时有效扩散层中的浓度梯度达到最大,ФAg+已不再能增加,使电流达到极限值I1(图3)。则得:
I1=-FDcb/δ (4)
由于Ag+电沉积的迁越过程中I0很大,可认为是可逆的,故可以利用能斯脱平衡电势公式来推导扩散步骤的超电势ηd:
(5)
此式是上述电积过程的扩散超电势的表达式,其特征是存在着极限电流I1。极限电流限制了实际的生产过程,但通过搅拌可以减小有效扩散层厚度δ,增加I1以强化生产过程。
对于电极反应,现考虑Ag+的电沉积过程:
Ag++e─→Ag (1)它的迁越步骤交换速率很快,即交换电流密度I0很大,故要求的推动力很小,因此迁越超电势ηCT→0。在过量的"无关电解质"存在的条件下,电极的电流I完全靠Ag+的扩散步骤来支持(图1),即决定于Ag+到达金属相表面的扩散通量ФAg+。
根据法拉第电解定律和斐克第一定律(见扩散),可得下式:
(2)
式(2)的负号表示还原电流有负值,D为扩散系数,F为法拉第常数。为了找出界面的浓度梯度дc/дx,W.H.能斯脱于1904年提出了一个近似的假设,即在电极的液相界面上存在着有效扩散层,它的厚度为δ(约10~100微米)。在该层的内部,浓度梯度是线性的(图 2);在该层之外,Ag+的浓度与溶液本体浓度cb一样。能斯脱的上述模型虽与实际不尽相符,但使问题的处理大为简化,且所得结果与比较严格的处理相差不大。这样,式(2)可简化为:
(3)
式中的cS表示Ag+在金属表面的浓度。
当上述电极极化增大时,电流增加使金属表面Ag+的沉积加速,最终 cS将降到零,产生极限电流。此时有效扩散层中的浓度梯度达到最大,ФAg+已不再能增加,使电流达到极限值I1(图3)。则得:
I1=-FDcb/δ (4)
由于Ag+电沉积的迁越过程中I0很大,可认为是可逆的,故可以利用能斯脱平衡电势公式来推导扩散步骤的超电势ηd:
(5)
此式是上述电积过程的扩散超电势的表达式,其特征是存在着极限电流I1。极限电流限制了实际的生产过程,但通过搅拌可以减小有效扩散层厚度δ,增加I1以强化生产过程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条