1) classical solution
古典解
1.
The classical solution of the first order evolution equations in the hyperbolic case;
一阶时变双曲型发展方程的古典解
2.
Global classical solution of an irreversible phase change problem;
一个不可逆相变问题的整体古典解
3.
The generalized solution and classical solution of the complex variable Lewy equation
复变量Lewy方程的广义解和古典解
2) classical solutions
古典解
1.
This paper is mainly estimate ∫Bε-1uεk(x,t)dx+∫t0∫Bε-1(uεk)qdxdτ≤1 when boundary value problem:u(x,t)=0,|x|=ε-1 and estimate ∫T0∫Bε-1(uεk)α-1[1+(uεk)α]2|▽uεk|pdxdτ≤C(α) when initial value problem:u(x,0)=kNh(kx),x∈Bε-1 of classical solutions u(x,y) for non-Newton filtration equations with absorption and convection:ut=div[(|▽u|2+ε)p-22▽u]+xibi(u)+uq,(x,t)∈Bε-1×(0,T
分别简述并证明了含有吸收项和对流项的非Newton渗流方程ut=div[(|▽u|2+ε)p2-2 ▽u]+xibi(u)+uq,(x,t)∈Bε-1×(0,T)对于边值问题:u(x,t)=0,|x|=ε-1的条件下的古典解的估计∫Bε-1ukε(x,t)dx+∫∫0tBε-1(uεk)qdxdτ≤1及初值问题:u(x,0)=kNh(kx),x∈Bε-1的条件下的古典解的估计∫0T∫Bε-1[1(+u(εk)uαεk-)1α]2|▽uεk|pdxdt≤C(α)。
2.
This paper deals with the existence of classical solutions for a degenerate parabolic equations and the blow up criteria.
讨论了退化方程初边值问题的古典解的存在性以及发生爆破的条件并分析了爆破点的位置。
3.
Using the energy methods and the bootstrap arguments,the global existence of classical solutions for a Lotka-Volterra food-chain model of three interacting species with self and cross-population pressure is proved when the space dimension is at most 5.
应用能量估计方法和bootstrap技巧证明了空间维数不超过5时一类带自扩散和交错扩散项的三种群Lotka-Volterra食物链模型古典解的整体存在性。
3) semi-classical solution
半古典解
4) classical wave solution
古典波解
5) nonnegative classical solution
非负古典解
1.
Existence and uniqueness of nonnegative classical solution for a parabolic system with nonlinear boundary conditions;
一个具有非线性边界条件的抛物系统非负古典解的存在唯一性(英文)
6) global classical solution
整体古典解
1.
The existence, uniqueness, and stability of the global classical solution of the problem are proved by combining the Galerkin method and a priori estimates.
运用Galerkin方法结合能量估计证明了问题的整体古典解的存在性、唯一性与稳定性。
2.
The existence and uniqueness of the global classical solution of this problem are also proved by means of the method of continuation of solution.
利用解的延拓法证明了上述问题的整体古典解的存在性和惟一
3.
This existence and uniqueness of global classical solution of the Cauchy problem are proved by the iterative method.
利用迭代法证明此 Cauchy问题整体古典解的存在性和惟一性 。
补充资料:古典区域
古典区域
[古典区域1“流动性陷阱”的对称。指的是当利率高达一定水平时,人们的投机余额将全数投入债券,此时灵活偏好函数变成了一条直线,货币的投机需求为零,利率完全失去了稳定性。与“流动性陷阱”相似,此时金融当局想通过调节利率来影响货币需求变得非常困难。 古典区域即如图3一6所示的CD线。图3一6
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条