说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 低噪声
1)  low noise
低噪声
1.
CMOS regulated cascode low noise transimpedance amplifier;
CMOS RGC低噪声跨阻放大器
2.
Research and design of photoelectric detection circuit with low noise;
低噪声光电检测电路的研究与设计
3.
Analysis and design of a low noise CCD video processing circuit for astronomical camera;
天文观测相机低噪声CCD视频处理电路的分析与设计
2)  low-noise
低噪声
1.
The research of 90kW microbus for low-noise mobile electric power station;
90kW面包车型低噪声移动电站的研制
2.
Noise Analysis in Low-noise Operational Amplifier Design;
低噪声运算放大器噪声分析
3.
Low-Power Low-Noise Correlated Double Sampling Circuit for CMOS Image Sensor;
一种低功耗低噪声相关双取样电路的研究
3)  low-frequency noise
低频噪声
1.
Impact of indoor virescence on annoyance of indoor low-frequency noise;
室内绿化装饰对低频噪声烦恼度的影响
2.
Theoretical analysis of low-frequency noise radiated from bridge vibrations;
桥梁振动辐射低频噪声评估方法研究
3.
The investigation of relations between low-frequency noise subjective sensation and spectrum characteristics
低频噪声主观感知与频谱特征关系研究
4)  Noise reduction
降低噪声
5)  noise reduction
噪声降低
1.
The effects of noise on chaotic time series analysis were introduced and the previous studies associated with the noise reduction in chaotic time series data were reviewed as well.
介绍了噪声对混沌时序分析的影响,回顾了混沌时序噪声降低方法的研究情况。
6)  low frequency noise
低频噪声
1.
Jury studies of sound quality for low frequency noise;
低频噪声声品质评价实验研究(英文)
2.
Reduction of low frequency noise in control room of thermo plant;
热电厂控制室低频噪声治理实例
3.
Calculation of the Lyapunov exponent for low frequency noise in semiconductor laser and chaos indentification
半导体激光器低频噪声的Lyapunov指数计算和混沌状态判定
补充资料:低噪声微波技术
      降低微波接收设备内部噪声的技术。其主要内容是微波低噪声(固态)器件技术和相应的微波电路技术,还涉及低温物理、量子力学等学科。微波波段接收设备的性能主要受其内部噪声的影响,外差式接收机的内部噪声取决于低噪声前端,可用噪声系数F(分贝)、有效噪声温度Te(K)或噪声量度M(分贝)等表征。接收设备的外部噪声取决于天空噪声温度极限,频率范围为0.1~1吉赫的外部噪声主要是银河系噪声;1~10吉赫范围内主要是宇宙背景噪声(3.4K),10吉赫以上则取决于大气噪声(对外空系统取决于宇宙背景噪声和光子噪声)。前端的有效噪声温度应与具体条件下作用于其输入端的外部噪声温度(主要是天线噪声温度Ta)相当。
  
  研究概况  随着半导体技术的发展,半导体器件以其明显的优越性逐步取代了电子管,因此,低噪声技术基本上就是固态低噪声技术。低噪声技术研究起始于40年代用于雷达的点触式半导体二极管混频器。自1958年变容二极管问世后,60年代起参量放大器(参放)得到广泛应用,同期还相继研制成量子放大器和隧道二极管放大器(隧放)。60年代中期,双极型晶体管的使用频率提高到微波波段,制成了L波段低噪声双极型晶体管放大器。1971年制成了微波砷化镓肖特基势垒栅的场效应晶体管,使低噪声技术进入了一个新的阶段。场效应晶体管放大器在高频率和低噪声方面显著优越于双极型晶体管,迅速取代了隧放和行波管放大器,且有逐步取代参放之势。现代在短毫米波段,二极管混频器几乎是唯一实用的低噪声检测手段。自60年代以来,对利用超导的约瑟夫逊结器件制成低噪声混频器和参放不断进行探索研究,已显示其在亚毫米至远红外波段的优越性(见超导性的微波应用)。
  
  应用  低噪声微波技术在通信、雷达、遥感、电子对抗等系统以及射电天文、精密测量等应用中起着重要的作用。在这些方面,除了低噪声指标之外,往往还须满足功率增益、频带宽度、线性工作范围、脉冲功率容量、抗电磁干扰、抗核辐射,以及适应恶劣环境的能力等技术要求。
  
  
  性能与水平  80年代前期的微波低噪声器件性能见图。量子放大器在 1~30吉赫频率有最低有效噪声温度(接近宇宙背景温度),但必须致冷至4K,技术复杂,设备庞大而昂贵,且频带很窄(相对带宽小于 1%)。参放提供常温下最低的有效噪声温度,致冷于20K还可进一步降低,其相对带宽可达20%,但在毫米波段性能和应用因泵源尚难解决而受到限制。在 1吉赫以下,双极型晶体管常用于廉价的放大器,而在1吉赫以上则广泛应用场效应晶体管放大器,它在常温下的噪声性能接近参放,在20K时可与参放媲美。80年代前期,场效应晶体管进入毫米波段(实现60吉赫噪声系数 7.1分贝,相应增益5.5分贝)。场效应晶体管具有稳定性好、线性工作范围大、频带宽(可实现信频程,甚至0~18吉赫的宽带平坦特性)、体积小、致冷简易等优点,但抗烧毁和耐峰值功率的能力比参放约低一个数量级。晶体管放大器适于制作微波集成电路。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条