1) Degree of approximation
逼近度
1.
The convergence of these operators in the space Lp is studied and the estimation of the degree of approximation is obtained.
构造了一类Kantorovich型算子,讨论该算子在Lp空间的收敛性并对其逼近度进行估计,给出了李文清构造Bn*(f,x)算子时的相应结果。
2.
In this paper,a kind of generalized Kantorovic operators are constructed,the convergence of these operators in the space Lp (1<p<+∞) is studied and the estimate of the degree of approximation is obtained.
构造了一类推广的Kantorovic型算子,讨论了它们在Lp空间(1
逼近度的估计。
2) approximation degree
逼近度
1.
A modified Szasz operator was constructed and proved that its approximation degree was improved from second Ditzian-Totik modulus to third modulus.
构造了一种变形的Szasz算子,证明了其逼近度由二阶Ditzian-Totik模提高到三阶光滑模。
2.
It is discussed the existence, uniquenss,approximation degree of interporlation by S +2 -4 with boundary conditions in the type Ⅱ triangulations.
主要研究了具有C2-拼接的一类带有边界条件二元四次多项式插值逼近问题,并证明了它的存在性、唯一性,给出了它的逼近度。
3.
The relationship between approximation degree by sum-integral operators and the K functional is established.
利用插补空间方法 ,建立了多元和型积分算子逼近的正定理和逆定理 ,给出了其逼近度与函数光滑性间的关系 。
3) approximation order
逼近度
1.
Let D denote the rectangular triangulated by a so-called Type-Ⅱtriangulation △_mn~(2),In this paper,we discuss the transfinite interpolation and appronimation on △_mn~(2) by bivariate cubic splince,with some boundary conditions,we obtain the existence and uniqueness and express of interpolation splines and esitimate their approximation order.
本文主要给出了矩形区域在Ⅱ型剖分下的一类带有边界条件的二元三次样条超限插值,并估计了它的逼近度。
2.
In this paper,we discussed the existence,uniqueness,and approximation order of interpolation by bivariate quartic splines with B-Net in three direction meshes.
本文主要用B-网方法研究了平行六边形区域在三向部分△63下的一类二元四次样条插值,并给出了它的存在性、唯一性及逼近度问题。
3.
The approximation order is discussed,and a numerical solution of PDE and graphical display are also provided.
我们证明了这类插值问题的解的存在性和唯一性,给出了解样条的分片表达式及其逼近度的估计。
5) approximation rate
逼近度
1.
This paper is to study the approximation rate of the Grünwald interpolation polynomials to |x| on the zeros of Chebyshev polynomials of the second kind,and prove that the result can t be improved.
文章研究以第二类Chebyshev多项式零点为插值结点组的Grünwald插值多项式Gn(f,X;x)对|x|的逼近度,并证明其不可改进。
6) angle approaching
角度逼近
1.
On the basis of interpolation theory, the algorithm of angle approaching circular interpolation works out the coordinate of interpolation points by angle approaching theorem.
角度逼近圆弧插补算法是在插补原理的基础上,利用角度逼近定理进行迭代计算得到插补点的坐标。
补充资料:函数逼近度
函数逼近度
approximation of functions, measure of
函数通近度【叩p门‘m涌田of抽n‘叨s,measu花of;.明痴栩...中担阅浦Me禅],函数逼近的度量 逼近误差的定量表示.当考虑用函数价逼近函数f时,常用包含f和甲的函数空间中的度量来定义逼近度群了,树.例如,若f和职是区间【a,b]上的连续函数,则通常使用C【a,b1的一致度量作为逼近度,即 风/,职)=max{f(z)一例r)}. 。《i‘h-如果不能保证被逼近函数是连续的或问题的条件暗示了f和职在【a,b]上平均意义下接近的重要性,则可采用空间气[a,b]中的积分度量作为逼近度,即 b 可,,)=j。(‘)If(,)一,(,)},*,,>o,其中q(t)是权函数.就实际问题而言,p=2的情形是最常用也是最方便的.见函数的均方通近(mcan squ-are aPProximation of a function). 逼近度可以只涉及到f和毋在【a,b]上某些离散点红(k=l,…,n)的值,例如: 以f.。、=max}f了r:)一叫I:)}, l《k《月- 可,p)=艺qk If(,、)一中(tk)I’, k=l其中乳是正系数. 用类似方式可定义两个或更多个变量的函数逼近度. 函数族F对函数f的逼近度通常定义为.佳通近(best aPProximation) E(f,月=叮,F)=i过叮,毋)· 中〔I而 E(叭,F)=风业,月=sup iof风f、价) f〔皿中〔F’常被看作是某个固定集F中的函数中对f所在的函数族叭的逼近度.它刻画了叨中的函数与最靠近它们的F中的函数之间的最大偏差. 在任一度量空间X中考虑函数逼近时,一般将x和“(或集F)之间的度量距离p(x,u)(或p(x,F》视作元素u(或集F)对元素x的逼近度料(x,的.【补注】逼近度也称作误差度(error measure).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条