说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 分形扩散
1)  fractal diffusion
分形扩散
1.
The fractal diffusion equation of oxygen in granular coal and the adsorptive velocity equation of oxygen on coal granule fractal surface were obtained on the basis of the concept of fractal probability density.
引入分形概率密度的概念,建立了氧气在散体煤中的分形扩散方程和散体煤颗粒分形表面氧气吸附速率方程。
2)  fractal diffusion model
分形扩散模型
1.
Fourier trigonometric series algorithm used in Fick s diffusion law is extended to Fourier-Bessel algorithm in a fractal diffusion model for porous materials.
将Fick扩散定律的Fourier三角级数算法推广成多孔材料分形扩散模型的Fourier-Bessel级数算法,并把它应用于化学工程中吸附问题涉及的浓度分布与相对吸附量的计算中,取得一些规律性认识。
3)  diffusion shape
扩散形状
1.
According to the limitation of the traditional algorithms, this dissertation presents a new fiber tracking algorithm based on the diffusion shape.
本文针对现有纤维跟踪算法存在的问题,提出了基于扩散形状的纤维跟踪算法,该算法结合了流线跟踪(streamline tracking,STT)法与张量弯曲(tensor deflection,TEND)法的优点,对不同的扩散形状采用不同的跟踪方向,尤其在平面扩散的情况提出了更接近纤维走行的跟踪方法,减少了跟踪方向与实际纤维走行的误差,能更完整、更准确地显示大脑白质的纤维走行。
4)  tree-style diffusing
树形扩散
5)  globe diffusion
球形扩散
6)  pillar diffusion
柱形扩散
补充资料:分形生长和扩散限制聚集模型


分形生长和扩散限制聚集模型
fractal growth and diffusion-limited aggregation model

性质上具有的特征。 长期以来,人们往往把图形或几何对象的维数与空间维数等同起来,实际上并不一定如此。现把一个D维的几何图形,每一维的尺寸放大,倍,就得到尼个与原来图形相似的几何图象,于是有 羟一lD豪斯道夫把 、 D:器称为几何图形的维数,人们则称它为豪斯道夫维数。一个正方形,把它每边放大3倍,得到9个与原来正方形相似的图形,得D=2,这与直观的空间维数正好吻合。但若把一单位长度线段三等分,然后把中间一段去掉,剩下的两段各自再三等分并舍去中段,这样重复地进行下去,就可以获得无数个中间有空隙的线段(图1)。取0~寺线段,尺寸放大3倍(,:3),,为一单位线段,去掉中间1/3,则0~寺和2/3~1线段与原来线段完全相同,即尼=2,于是 D:罢兰0.6309图l D圭O.6309的分形图象可见豪斯道夫维数不限于整数。在这个例子中其值小于1,比线段的空间维数小。对DLA模型求出的粒子簇,利用密度相关函数,求得聚集结构的豪斯道夫维数,对二维空间D圭1.7,三级空间D兰2.4。这一类维数D低于相应空间维数,具有标度不变性的无穷嵌套的几何图象,人们称它为分形。a胞状界面难酾瓣 b枝晶图象 图2界面形态的计算机模拟 对DLA模型作些推广和修正,可以从微观上研究生长界面失稳后的界面形态的演变。例如T.维赛克分形生长和扩散限制聚集模型fractal growthand diffusion一limiteda创犷egation model扩散限制聚集模型是应用计算机模拟微粒无规扩散聚集的粒子簇图象的一种几何模型。简称DLA模型。是研究分形生长的主要方法。 20世纪70年代,B.B.曼德尔布罗特(Mandel-brot)开始对分形作广泛的研究,揭示了自然界许多现象的分形本质。80年代初,T.A.威滕(Witten)和LM.桑德(Sander)应用计算机模拟微粒无规扩散聚集过程,提出了扩散限制聚集模型。它很快被应用于物理学的许多方面,而且被实验所证实。模拟的方法是,首先在晶格中心处放一个种子微粒;将另一微粒放入晶格内作无规行走,到达种子微粒的最近邻停下来;然后再放出一个微粒无规行走到前两个微粒最近邻,又停下来。让这一过程重复进行,最后在晶格中心形成一个相当大的粒子簇。 自然界存在着许多研究对象,它们具有标度不变的性质,即采用不同放大倍数来观察,图象都是相似的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条