2) Metal geometric structure of the parameters
金属网几何结构的参数
3) geometric parameter
几何参数
1.
The effects of geometric parameters on axial shortening of inertia friction weldment in ring form;
几何参数对环件摩擦焊接轴向缩短量的影响
2.
Discussion about relationship between geometric parameters and grinding parameters of hyperboloid twist drill;
双曲面麻花钻几何参数与刃磨参数关系探讨
3.
Influence of the Geometric Parameters of the Molded Lines of Scroll Compressors on Their Friction Loss Power;
涡旋压缩机型线几何参数对其摩擦损失功率的影响研究
4) geometrical parameters
几何参数
1.
Some information of both electronic and geometrical parameters of these compounds were employed for their structural characterization.
利用电子参数(X_G)、几何参数(X)分别对40个酯、24个硫酯化合物进行结构表征并与其水解速率常数(k)建立多元线性定量构效相关(QSPR)模型:logk=a+b∑X_G+c∑X(式中a、b、c为系数)同时运用逐步回归结合统计检测对模型变量进行筛选,最后对所得模型稳定性能进行了深入分析和检验。
2.
It is necessary to extract molten pool geometrical parameters in real time or to extract back bead width off-line either in seam tracking or in penetration control.
不论熔透控制还是焊缝跟踪 ,都需要实时或离线提取焊接熔池正面或反面的几何参数 。
3.
Based on the coal impact breaking mechanism of impact coal cutter and considering the requirement of coal lump rate and dust etc, the determination of geometrical parameters of the impact tools has been analyzed.
根据冲击式采煤机的破煤原理 ,结合煤炭生产中对煤体块度、粉尘量、能量损失等方面的要求 ,分析了冲击式采煤机刀齿几何参数的确定方
5) Geometry parameter
几何参数
1.
17 molecular structures based on 2-OH azobenzene crystal structure data which retrieved from CSD have calculated and analyzed to their geometry parameters using FORTRAN program written by ourselves.
从剑桥晶体结构数据库(CSD)中系统地提取了17个邻羟基偶氮苯的晶体结构数据,用自编的FOR TRAN程序对它们的几何参数进行了计算。
2.
The applicable machining materials of PCBN cutting tools and rational selection methods for geometry parameters, cutting data and insert brands of PCBN cutting tools are introduced.
介绍了PCBN刀具适用的加工材料以及刀具几何参数、切削用量、刀片牌号的合理选择方法 ,针对PCBN刀具在实际加工中的常见磨损、破损形式提出了具体改善措
3.
The geometry parameters for electrical railway contact wire, height,stagger,etc, and the measurement principles are ex-plained.
介绍了电气化铁路接触网导高、拉出值等几何参数的意义和测量原理,提出了一种基于嵌入式系统的接触网多参数测量仪的设计方案,采用激光测距仪、旋转光栅编码器及辅助器材测量各几何参数,在液晶屏上显示计算结果。
6) geometrical parameter
几何参数
1.
Auto optimizing geometrical parameters of single lenses;
单透镜几何参数的自动优化设计
2.
The rational geometrical parameter are confirmed from the analysis of the cutting parameter and the boring quality and favorable effect are obtained in the practical manufacture .
通过对切削参数和孔加工质量的分析 ,确定了BTA钻头合理的几何参数 ,并已在实际生产中取得了良好的效果。
3.
And the conclusion of the geometrical parameters in this part of screw was enduced.
以科学假设为基础 ,建立了单螺杆注射机加料段固体塞的力学模型 ,据此讨论了该段螺杆的几何参数 ,并给出了不同的几何参数在不同的取值范围内对加料段输送能力的影响 ,对注射机的发展具有理论指导意
补充资料:结构的几何不变性
在每个元件都是刚性的前提下,结构承受任意形式的载荷后能保持原有几何形状的特性。
一个由若干元件组成的系统,在受到外力后会产生变形。变形包括两部分:一是元件本身的弹性或塑性变形,另一是不考虑元件的这种变形时整个系统宏观外形的改变。根据后者,系统可分成机构、结构和瞬时可变结构三类:
①机构 它是在外力作用下不能保持宏观外形的系统。如图1所示的四连杆平面系统,在外力P作用下,由于杆件能转动而使系统变形。 ②结构 即几何不变系统。在不考虑元件自身变形的前提下,载荷的作用不能使这种系统的宏观外形发生任何改变。结构只起承受和传递外力的作用。图2所示的杆系结构就属于此类。
③瞬时可变结构 在外力开始?饔玫乃布洌蠡挂谎⑸湫危欢ǖ谋湫魏螅帜芟蠼峁挂谎惺芡饬ΑM?3所示的直线二铰接杆就是一种瞬时可变结构:开始受到垂直于杆的外力P作用的瞬时,杆内只产生沿水平方向的反力,它们不能反抗外力,因此,杆将绕支点转动。但当杆转过一定角度后,A、B杆中的内力NA、NB的垂直分量就能平衡外力P,这时杆系便成为几何不变的。
根据结构和坐标系之间是否有相对位置变化,可将结构分为可移动结构和不可移动结构两类。桥梁结构对于地球就是不可移动结构,而汽车对于地球则是可移动结构。
判断结构几何不变性和可移动性的方法很多,主要有以下三种:
①组成法 不在一直线上的三个铰接杆所组成的平面系统是最简单、最基本的几何不变系统(图4之a)。在此系统上每增加一个铰链和两个杆,就得到新的几何不变系统。如果将它连接在一个固定的基础或系统上,则它既是几何不变的又是不可移动的。空间基本几何不变系统由不在一个平面上的四个铰链和六个杆组成(图4之b)。在此系统上每增加不在一个平面上的三个杆和一个铰链,就得到新的几何不变系统。可移动和不可移动的含义和平面结构相同。
②杆和铰链关系法 几何不变铰接系统的杆数N 和铰数n有下列的关系:
为使系统具有几何不变性,除N和n应满足上述关系外,还必须对杆件作合理安排。 图5表示两个具有相同杆数和铰数的系统。图5之a的系统由于安排合理而具有几何不变性,因而属结构;图5之b则由于安排不合理而成为机构。
③平衡判断法 此法的根据是物体的平衡条件。若系统在任何外力作用下都能保持平衡,它就是几何不变的。以平面结构为例,要使结构上任何一点固定不动,则作用于该点的所有外力必须满足平衡方程
其中为x方向的所有分力之和;为y方向的所有分力之和。以图6之a所示的二铰接杆系统为例,在铰点O受到外力Px和Py后,固定物体对杆OA和OB的反作用力为R1和R2,并且它们与x 轴的夹角分别为θ1和θ2(图6之b)。由平衡方程可建立下列一组关系式:
R1cosθ1+R2cosθ2=Px,
R1sinθ1+R2sinθ2=Py。解出反作用力R1和R2为:
式中
如果安排合理, 则Δ厵0,从而R1和R2为有限值。系统成为几何不变的;如果θ2=π+θ1,则Δ=0,从而得出R1=∞,R2=∞。在此情况下,角θ1和角θ2成为瞬时可变的。
对于复杂系统,必须把它分成若干部分并逐一检查,才能最终判断整个系统是否几何不变。
参考书目
叶逢培、吴富民、张纪刚编:《飞行器结构力学》,北京科学教育编辑室,北京,1965。
一个由若干元件组成的系统,在受到外力后会产生变形。变形包括两部分:一是元件本身的弹性或塑性变形,另一是不考虑元件的这种变形时整个系统宏观外形的改变。根据后者,系统可分成机构、结构和瞬时可变结构三类:
①机构 它是在外力作用下不能保持宏观外形的系统。如图1所示的四连杆平面系统,在外力P作用下,由于杆件能转动而使系统变形。 ②结构 即几何不变系统。在不考虑元件自身变形的前提下,载荷的作用不能使这种系统的宏观外形发生任何改变。结构只起承受和传递外力的作用。图2所示的杆系结构就属于此类。
③瞬时可变结构 在外力开始?饔玫乃布洌蠡挂谎⑸湫危欢ǖ谋湫魏螅帜芟蠼峁挂谎惺芡饬ΑM?3所示的直线二铰接杆就是一种瞬时可变结构:开始受到垂直于杆的外力P作用的瞬时,杆内只产生沿水平方向的反力,它们不能反抗外力,因此,杆将绕支点转动。但当杆转过一定角度后,A、B杆中的内力NA、NB的垂直分量就能平衡外力P,这时杆系便成为几何不变的。
根据结构和坐标系之间是否有相对位置变化,可将结构分为可移动结构和不可移动结构两类。桥梁结构对于地球就是不可移动结构,而汽车对于地球则是可移动结构。
判断结构几何不变性和可移动性的方法很多,主要有以下三种:
①组成法 不在一直线上的三个铰接杆所组成的平面系统是最简单、最基本的几何不变系统(图4之a)。在此系统上每增加一个铰链和两个杆,就得到新的几何不变系统。如果将它连接在一个固定的基础或系统上,则它既是几何不变的又是不可移动的。空间基本几何不变系统由不在一个平面上的四个铰链和六个杆组成(图4之b)。在此系统上每增加不在一个平面上的三个杆和一个铰链,就得到新的几何不变系统。可移动和不可移动的含义和平面结构相同。
②杆和铰链关系法 几何不变铰接系统的杆数N 和铰数n有下列的关系:
为使系统具有几何不变性,除N和n应满足上述关系外,还必须对杆件作合理安排。 图5表示两个具有相同杆数和铰数的系统。图5之a的系统由于安排合理而具有几何不变性,因而属结构;图5之b则由于安排不合理而成为机构。
③平衡判断法 此法的根据是物体的平衡条件。若系统在任何外力作用下都能保持平衡,它就是几何不变的。以平面结构为例,要使结构上任何一点固定不动,则作用于该点的所有外力必须满足平衡方程
其中为x方向的所有分力之和;为y方向的所有分力之和。以图6之a所示的二铰接杆系统为例,在铰点O受到外力Px和Py后,固定物体对杆OA和OB的反作用力为R1和R2,并且它们与x 轴的夹角分别为θ1和θ2(图6之b)。由平衡方程可建立下列一组关系式:
R1cosθ1+R2cosθ2=Px,
R1sinθ1+R2sinθ2=Py。解出反作用力R1和R2为:
式中
如果安排合理, 则Δ厵0,从而R1和R2为有限值。系统成为几何不变的;如果θ2=π+θ1,则Δ=0,从而得出R1=∞,R2=∞。在此情况下,角θ1和角θ2成为瞬时可变的。
对于复杂系统,必须把它分成若干部分并逐一检查,才能最终判断整个系统是否几何不变。
参考书目
叶逢培、吴富民、张纪刚编:《飞行器结构力学》,北京科学教育编辑室,北京,1965。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条