1) BP neural network combination
BP神经网络联合
1.
In order to improve effectively the accuracy rate and reliability of remaining oil distribution forecast in oil field,a new model is proposed,which utilizes the merits of BP neural network combination model and two-level D-S evidence reasoning model and avoids their demerits.
为了有效地提高油田剩余油分布预测的准确率和可靠性,通过BP神经网络联合模型与两级D-S证据推理模型的优势互补进行主客观证据融合,实现了剩余油分布多属性特征的准确分类。
3) combined BP neural network
组合BP神经网络
1.
An algorithm of combined BP neural network data mining based on fuzzy clustering;
一种基于模糊聚类的组合BP神经网络数据挖掘方法
2.
This paper introduces an algorithm of combined BP neural network data mining based on fuzzy clustering,and produces the combined BP neural network model and improved Heuristicbp algorithm,then puts this algorithm into mathematical function-value prediction,and gets the purpose of short training-time and high predicting-precision.
介绍了一种基于模糊聚类的组合BP神经网络的数据挖掘方法,并给出了该方法的模型和启发式BP改进算法Heuristicbp,且将其应用于数学函数值预测中,取得了学习时间短和预测精度高的效果,实验证明该方法是有效的,具有较高的实用性。
3.
The soft sensor is realized by combined BP neural network.
针对PTA装置溶剂脱水干塔精馏过程中塔釜排出液含水量是衡量精馏过程的重要参数,而其在线实时测量难以实现的状况,采用组合BP神经网络方法对其进行软测量。
4) compound BP neural network
复合BP神经网络
5) hybrid BP neural network
混合BP神经网络
1.
Based on financial indicators and corporate governance indicators, the paper develops two disclosure fraud detection models by applying the Logistic regression and hybrid BP neural network method respectively.
以2001年~2005年间的192家被认定为信息披露舞弊的A股上市公司及相应的192家配对公司为样本,基于财务指标和治理指标,分别运用Logistic回归分析和混合BP神经网络构建上市公司信息披露舞弊的预警模型。
6) back propagation neural network
BP神经网络
1.
Analysis of lateral deformation of deep excavation based on back propagation neural network and fuzzy logical control;
基于BP神经网络与模糊控制的深基坑开挖侧向变形分析
2.
Reliability analysis of distributed sensor network based on back propagation neural network;
基于BP神经网络的分布式传感器网络的可靠性分析
3.
According to its features a short-term load forecasting model is built in which the autoregressive integrated moving average (ARIMA) is integrated with back propagation neural network (BPNN).
该模型利用ARIMA方法对线性时间序列逼近能力强的特点首先对预测日负荷进行预测,然后应用BP神经网络方法对预测结果进行修正,因此克服了单一算法存在的不足。
补充资料:神经网络BP算法
分子式:
CAS号:
性质:它是D.Rumellart等人提出的一个监督训练多声能神经网络的算法,每一个训练范例在网络中经过两遍传递计算:一遍向前传播计算,从输入层开始,传递各层并经过处理后,产生一个输出,并得到一个该实际输出和所所需输出之差的差错矢量;一遍向反向传播计算,从输出层至输入层,利用差错矢量对权值进行逐层修改。BP算法有很强的数学基础,戏剧性地扩展了神经网络的使用范围,产生了许多应用成功的实例,对神经网络研究的再次兴起过很大作用。
CAS号:
性质:它是D.Rumellart等人提出的一个监督训练多声能神经网络的算法,每一个训练范例在网络中经过两遍传递计算:一遍向前传播计算,从输入层开始,传递各层并经过处理后,产生一个输出,并得到一个该实际输出和所所需输出之差的差错矢量;一遍向反向传播计算,从输出层至输入层,利用差错矢量对权值进行逐层修改。BP算法有很强的数学基础,戏剧性地扩展了神经网络的使用范围,产生了许多应用成功的实例,对神经网络研究的再次兴起过很大作用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条