1) coupling boundary
耦合边界
1.
We present an optimal design of Photonic Crystal Waveguide Directional Coupler(PCW-DC) with adiabatic coupling boundary in this paper.
本文采用平面波展开法分析了双线型缺陷并列平行光子晶体波导的带隙结构、缺陷模式及耦合长度,提出了一种具有耦合边界的光子晶体定向耦合器,并探讨了光波在其中的传输性能。
2.
Second, adopts the concept of the fourth class boundary conditions,that is coupling boundary, which can describe the dynamic linking process between air and soil more actually,and also it can avoid that heat transfer coefficient is not constant in process effectively.
然后将第四类边界条件即耦合边界条件引进地下工程的动态传热数值模型中,它能更加真实的反应实际条件下的地道内空气和岩壁之间的动态耦合传热过程,并有效避免对流换热系数在实际过程中不为常数的问题。
3) coupled viscous boundary
耦合粘性边界
1.
Hooke’s law and theory of waves were adopted to deduce the formula of coupled viscous boundary.
根据波在地基的3个方向(x、y、z轴)都可以进行传播的特点,假定了地基中质点沿3个方向的振动表达式,通过胡克定律和波动理论,推导了弹性地基中三维动力问题的耦合粘性边界的公式。
4) coupled boundary condition
耦合边界条件
1.
A coupled boundary condition.
利用Navier-Stokes(N-S)方程与Oseen方程的耦合,设计出了原始变量下稳态不可压N-S方程在出流边界上的一个耦合边界条件。
2.
To deal with self-adjoint Sturm-Liouville problems with coupled boundary conditions.
讨论了带有耦合边界条件的自伴Sturm-Liouville问题。
3.
Based on the relations about left-definite problems and right-definite problems,and the method of the eigenvalue curve,some conclusions of left-definite coupled boundary condition are obtained.
利用左定问题与右定问题的关系以及特征曲线的方法,给出了Sturm-Liouville问题耦合边界条件下若干左定边界条件的判定。
5) coupled boundary conditions
耦合边界条件
1.
For a Sturm-Liouville equation with positive leading coefficient function,using some limits on the space of self-adjoint boundary conditions,analytic loop of space of self-adjoint boundary conditions and monotonicity of continuous eigenvalue branch,we give a new proof of the eigenvalue inequalities for coupled boundary conditions and those for separated boundary conditions established.
对于首项系数函数为正的Sturm-Liouville方程,利用自伴边界条件空间中一些边界条件的极限、自伴边界条件空间中的解析圈及连续特征值分支单调性的性质,给出耦合边界条件与分离边界条件下特征值间不等式的另一种证法。
6) hybrid method of FEM and BEM
有限元与边界元耦合法
补充资料:jj 耦合
由给定电子组态确定多个价电子原子的能量状态的一种近似方法。它适用于原子中各价电子间的静电斥力势能之和远小于各价电子的自旋轨道磁相互作用能之和的情况,单个电子的轨道角动量pli将和其自旋角动量psi耦合成该电子的总角动量pji,,ji是第i个价电子的总角动量量子数,媡=h/2π,h是普朗克常数。
以两个非等效电子为例,设电子组态为(n1l1n2l2),n1、n2和 l1、l2分别为两电子的主量子数和轨道量子数,电子的自旋量子数都为1/2,即s1=s2=1/2,按原子的矢量模型,电子轨道角动量 pli与自旋角动量 psi耦合,。原子jj 耦合的多重谱项则由各种可能的(j1j2)确定,不同谱项间能量差别相对来说比较大,而两电子间静电作用使与耦合成原子的总角动量PJ,pJ=+,J为原子总角动量量子数,J=j1+j2,j1+j2-1,...,|j1-j2|,由于这种静电作用远小于电子的轨道与自旋相互作用,因此同一多重谱项中由于电子间静电作用而引起的不同J值的能态间距是很小的。jj 耦合形成的原子态符号是(j1j2)J 。
对于等效电子(见原子结构),耦合时要考虑泡利不相容原理,所形成的原子态要比非等效电子形成的原子态少。例如两个等效p电子经jj 耦合只能形成、、五种原子态,而两个非等效p电子经jj 耦合将形成、、和等十个原子态。
jj 耦合常适用于确定重元素原子的受激态和轻元素原子的高受激态,有时还适用于确定重元素的基态(例如Pb原子的基态)。
以两个非等效电子为例,设电子组态为(n1l1n2l2),n1、n2和 l1、l2分别为两电子的主量子数和轨道量子数,电子的自旋量子数都为1/2,即s1=s2=1/2,按原子的矢量模型,电子轨道角动量 pli与自旋角动量 psi耦合,。原子jj 耦合的多重谱项则由各种可能的(j1j2)确定,不同谱项间能量差别相对来说比较大,而两电子间静电作用使与耦合成原子的总角动量PJ,pJ=+,J为原子总角动量量子数,J=j1+j2,j1+j2-1,...,|j1-j2|,由于这种静电作用远小于电子的轨道与自旋相互作用,因此同一多重谱项中由于电子间静电作用而引起的不同J值的能态间距是很小的。jj 耦合形成的原子态符号是(j1j2)J 。
对于等效电子(见原子结构),耦合时要考虑泡利不相容原理,所形成的原子态要比非等效电子形成的原子态少。例如两个等效p电子经jj 耦合只能形成、、五种原子态,而两个非等效p电子经jj 耦合将形成、、和等十个原子态。
jj 耦合常适用于确定重元素原子的受激态和轻元素原子的高受激态,有时还适用于确定重元素的基态(例如Pb原子的基态)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条