1) zinc ferrite
锌铁氧体
1.
The citrate sol-gel synthesis method has been used to prepare zinc ferrite.
采用硝酸铁、硝酸锌、柠檬酸制备前驱体,在不同加热温度与速率下制备锌铁氧体。
2.
The spinel zinc ferrites ZnxFe3-xO4 (x=0.
0)锌铁氧体,利用X射线衍射仪(XRD)、振动样品磁强计(VSM)和射频阻抗材料分析仪对样品结构和磁性进行了分析。
3.
The zinc ferrite precursor is synthesized and it is calcined.
实验采溶胶-凝胶法制备锌铁氧体前驱体,煅烧前驱体,用X射线衍射仪(XRD)、微波分光仪对煅烧后产物的物相、微波吸收性能进行研究。
2) manganese zinc ferrite
锰锌铁氧体
1.
On defects structure of manganese zinc ferrite nanocrystallines by positron annihilation lifetime spectroscopy
用正电子湮没寿命谱研究锰锌铁氧体纳米晶的缺陷结构
2.
The test results show that the preparation of magnetized paper fiber filled by manganese zinc ferrite is feasible at relatively low temperature.
实验结果证明在相对低温的情况下,制备以锰锌铁氧体为填充物的磁性纸用纤维是可行的。
3.
Coagulation and sedimentation method were used for treating an effluent of a manganese zinc ferrite production factory based on the bench scale experiments, in which chemical and physical conditions for treatment were identified.
锰锌铁氧体生产废水采用混凝沉淀法处理 ,悬浮物去除率可达 99。
3) Mn-Zn ferrite
锰锌铁氧体
1.
Synthesis and magnetic properties of Mn-Zn ferrite nanoparticles;
锰锌铁氧体纳米粒子的制备和磁性能研究
2.
Adsorption behaviour of PEI on Mn-Zn ferrite magnetic nanoparticles;
聚乙烯亚胺在锰锌铁氧体纳米粒子表面定量吸附
3.
Preparation and characterization of Mn-Zn ferrite magnetic nanoparticles for tumor hyperthermia;
肿瘤热疗用锰锌铁氧体磁性纳米粒的制备及表征
4) MnZn ferrites
锰锌铁氧体
1.
Microwave hydrothermal synthesis of MnZn ferrites nanopowder;
微波水热法制备锰锌铁氧体纳米粉体
2.
MnZn ferrites near 10 nm size were successfully prepared by ball milling assistanted hydrothermal at the low temperature of 120℃, for 3h.
以硝酸铁、硝酸锰、硝酸锌为原料,采用传统水热法和球磨辅助水热法合成了锰锌铁氧体纳米粉体,通过xRD、TG-DSC和TEM研究了粉体的结晶性能、热性能以及粉体的形貌,分析了机械球磨的加入对纳米粉体制备的影响。
3.
MnZn ferrites powder was prepared by mechanochemical method using MnO2,Fe2O3 and ZnO as raw materials.
以MnO2、Fe2O3和ZnO为原料,采用机械力化学法制备锰锌铁氧体粉体。
5) manganese-zinc ferrite
锰锌铁氧体
1.
In order to improve the density and mechanical strength of manganese-zinc ferrite, the effects of substituting Ni for Mn in manganese-zinc ferrite with a nominal composition of the Zn0.
为了提高锰锌铁氧体的密度和力学性能,研究了Ni取代Mn对Zn0。
2.
Through the monitoring on the frequency performance and square-wave response performance of Manganese-Zinc ferrite coil withdifferent sizes、different raˉtios of winding and different matching impedances,the result .
通过对不同尺寸、不同匝数比和不同匹配阻抗下的锰锌铁氧体线圈的频带性能、方波响应性能测试实验,结果表明:适当匝数比和匹配阻抗的锰锌铁氧体线圈可以有效地抑制系统过电压和大电流信号对在线监测系统干扰和破坏。
3.
This paper introduces the main methods for preparing manganese-zinc ferrite materials, including traditional dry method process (ceramic process) and wet method process.
介绍了目前国内外制备锰锌铁氧体材料的主要方法及研究进展,包括传统的干法工艺 (陶瓷工艺 )和湿法工艺等,同时指出了各种制备方法的优缺点。
6) Ni-Zn ferrite
镍锌铁氧体
1.
Preparation of Ni-Zn ferrite from sodium jarosite residue;
用黄钠铁矾渣制备复合镍锌铁氧体
2.
The relationship between magnetization differential and temperature in Ni-Zn ferrite;
镍锌铁氧体微分磁化率与温度的关系
3.
The relations of magnetization differential with magnatic intensity describedby dM/dt-H curves are studied in Ni-Zn ferrite with a constant rate of increasing H.
用匀速率增加的直流磁场H磁化不同居里温度的镍锌铁氧体试样,测得磁化强度M的时间变化率曲线表明:同一温度下随外场速率H增加,曲线升高;同一外场速率下随温度升高,曲线降低;微分磁化率dM/dH可以采用等效畴壁运动表示。
补充资料:锰-锌铁氧体
分子式:Mn-Zn
CAS号:
性质:软磁铁氧体的主要品种之一。具有尖晶石型结构。密度5.1g/cm3,维氏硬度600~800。初始磁导率ua1000~5000。磁导率与品质因素的乘积150000(100kHz)。居里点134~200℃。饱和磁感应强度0.3~0.5T。矫顽力8~36A/m。电阻率20~1000Ω·cm。主要原料为铁、锰、锌的氧化物或盐类。一般用电子陶瓷工艺制造。如采用控制气氛烧结或热压烧结等新工艺,可获得性能优良的产品。一般在1kHz~10MHz频率范围内使用。可用于制作电感器、脉冲变压器、滤波器的磁芯、介质天然及磁头等。
CAS号:
性质:软磁铁氧体的主要品种之一。具有尖晶石型结构。密度5.1g/cm3,维氏硬度600~800。初始磁导率ua1000~5000。磁导率与品质因素的乘积150000(100kHz)。居里点134~200℃。饱和磁感应强度0.3~0.5T。矫顽力8~36A/m。电阻率20~1000Ω·cm。主要原料为铁、锰、锌的氧化物或盐类。一般用电子陶瓷工艺制造。如采用控制气氛烧结或热压烧结等新工艺,可获得性能优良的产品。一般在1kHz~10MHz频率范围内使用。可用于制作电感器、脉冲变压器、滤波器的磁芯、介质天然及磁头等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条