说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非晶和纳米晶软磁丝
1)  amorphous and nanocrystaline wires
非晶和纳米晶软磁丝
2)  amorphous and nanocrystalline soft magnetic material
非晶纳米晶软磁材料
3)  nanometer noncrystal soft magnetism
沸石基纳米非晶软磁
4)  nanocrystalline soft magnetic material
纳米晶软磁材料
1.
Neutron diffraction is performed on samples of the nanocrystalline soft magnetic material Fe 73.
用中子衍射技术研究了 3种不同热处理温度下形成的纳米晶软磁材料Fe73 。
5)  nanocrystalline soft magnetic materials
纳米晶软磁材料
6)  nanocrystalline soft magnetic alloys
纳米晶软磁合金
1.
Anisotropy model of nanocrystalline soft magnetic alloys and recent advance in three typical nanocrystalline soft magnetic materials with the trade names FINEMET, NANOPERM, HITPERM are reviewed briefly.
介绍纳米晶软磁合金的各向异性理论及FINEMET、NANOPERM、HITPERM等3种典型纳米晶软磁材料的研究进展,对于高温条件下使用的Fe Co基纳米晶软磁合金进行了讨论及展望。
2.
The important results in theoretical and applied studies on nanocrystalline soft magnetic alloys consisting of two ferromagnetic phases are described in detail in this paper.
本文详细论述了由两个铁磁相组成的新型纳米晶软磁合金在理论研究和实际应用方面所取得的重要成果。
补充资料:非晶高聚物的转变和松弛
      非晶高聚物在升温或降温过程中可以在流动态-橡胶态-玻璃态之间进行转变和松弛,此时在动态力学性能上(如耗能切变模量、耗能拉伸模量、力学损耗)会出现粘弹内耗峰;当主链中或侧基上有极性基团时,则在动态介电性能上(如介电损耗)会出现介电内耗峰;在温度坐标上多个内耗峰便可构成内耗谱。典型的粘弹和介电内耗谱如图所示。图中分为四个区域(不包括化学转变)。
  
  玻璃化转变或α松弛 即橡胶态与玻璃态之间的转变(图中第Ⅲ区),是由较长链段运动的冻结或解冻所引起的,每个链段约包括10~20个链节。运动冻结时的玻璃化温度以Tg表示。玻璃化转变的内耗峰比其他的都高大,故可作为主转变,以与其他次转变相区别,并可将Tg作为参比温度。
  
  当结晶性高聚物的熔体冷却时,长程分子链段运动被冻结住,即能形成玻璃态,这种玻璃态在X射线衍射图上不显示长程有序,因此不是结晶。
  
  某一给定高聚物的分子量较小时,Tg值依赖于分子量,若分子量高到某一限值时,Tg值即趋于恒定,故这种转变或松弛是链段运动而不是整链运动。对结构不同的高聚物,决定Tg值高低的主要因素是链间的作用力和主链的柔曲性。作用力大或链僵硬,都能使Tg增高。交联使Tg增高,增塑剂使Tg降低,无规共聚物的Tg在其相应的均聚物的Tg之间。所测得的Tg的高低还依赖于测试频率,这是松弛的特征,而不是热力学上的二级转变。高分子链完全停止运动时的温度称为T2,其值比Tg要低50°C左右。Tg值为180~450K时,活化能为80~500千焦/摩尔。
  
  许多高聚物在玻璃化温度时具有一些共同的特征,如处于等粘度状态(粘度为1010~1012泊),等自由体积状态(如 Δα·Tg≈0.113,式中Δα 为液态的与玻璃态的热膨胀系数之差),以及等熵、等热焓、等扩散状态等等。这方面的研究发展了相应的玻璃化转变理论,如自由体积理论、热力学理论、圆珠-弹簧模型分子理论等。
  
  在玻璃态中发生的次转变和松弛  在 T<Tg的温区中(图中第Ⅱ、Ⅰ 区),按温度下降顺序可称为β、γ、δ、ε等松弛。其运动单元比主转变的为小,对内耗峰的贡献也低,活化能也依次降低。
  
  液态中的转变  20世纪70年代中期,在T>Tg的温区中(图中第Ⅳ区),还发现从某一种液态转变为另一种液态的转变,其温度用T11表示,这是由颇长的链段乃至整个链的运动所引起的,是流动的前奏,T11(K)与Tg(K)之比值在1.1~1.2之间。
  
  化学反应与内耗谱  上述物理转变和松弛都假设在过程中不发生化学转化。若发生高分子化学反应,高聚物在结构和性能上将导致激烈的改变,也能在力学内耗谱和模量谱中反映出来。例如高分子的交联和裂构反应都能出现内耗峰,但模量变化则相反,交联使模量增高,裂构使模量降低。如果以预聚物聚合成为高聚物,Tg将随分子量的增高而提高,或随新产物的生成而改变,因而Tg是时间和温度的函数。(见高聚物粘弹性、高聚物介电性能)
  
  

参考书目
   钱保功、许观藩、余赋生等著:《高聚物的转变与松弛》,科学出版社,北京,1986。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条