说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 纳米颗粒悬浮液
1)  nanoparticle suspension
纳米颗粒悬浮液
1.
Experimental investigation on flow of nanoparticle suspension in mini tubes;
细圆管内纳米颗粒悬浮液流动特性的实验研究
2.
The 50 nm CuO nanoparticle suspension is prepared by supersonic oscillator with hy-drophilic dispersant SDBS.
通过添加亲水性分散剂,经超声振动制备了粒径为50 nm CuO纳米颗粒悬浮液
3.
Experiments were conducted to investigate the convection heat transfer of deionized water and copper oxide nanoparticle suspensions flowing through mini tubes.
实验研究了细圆管内去离子水和氧化铜纳米颗粒悬浮液的对流换热特性。
2)  Nano-particle suspension
纳米颗粒悬浮液
1.
Research on stability of nano-particle suspension;
黏度对纳米颗粒悬浮液稳定性的影响
3)  nano-suspensions
纳米颗粒悬浮液
1.
The viscosity of CuO nano-suspensions with dispersant is the basal data for the study of rheology and heat transfer enhancement of the suspensions.
基于此,得出纳米颗粒悬浮液的黏度在一定分散相质量分数范围内取决于分散剂的黏度,而在低质量分数和高质量分数时出现变异的结论。
4)  nanoparticle suspensions
纳米颗粒悬浮液
1.
Experiments were conducted to investigate the convective heat transfer of water with copper oxide nanoparticle suspensions flowing through circular stainless steel tubes.
实验结果表明,在所研究的尺寸下,层流时去离子水的努谢尔特数Nu要高于已有液体对流换热关联式计算之值,纳米颗粒悬浮液的对流换热系数高于水的,且纳米颗粒的质量分数越高,悬浮液的对流换热系数越大。
5)  nanoparticles suspension
纳米颗粒悬浮液
1.
Experiments were carried out on forced convective drag and heat transfer of nanoparticles suspension in a small steel tube with an inner diameter of 1.
结果表明:与H2O相比,CuO纳米颗粒悬浮液的对流换热特性较强,而流动阻力明显下降;添加表面扩散剂将增大流动阻力,但对换热特性没有影响。
6)  aqueous nanoparticle suspension
纳米颗粒水悬液
1.
In this paper, an aqueous nanoparticle suspension of a bis-methanophosphonate fullerene (n-BMPF) was prepared for the first time.
首次制备了1种二加成亚甲基富勒烯[60]膦酸酯衍生物(bis-methanophosphonate [60]fullerene,BMPF)的纳米颗粒水悬液(n-BMPF),并采用邻苯三酚自氧化法结合分光光度法,测定了n-BMPF对超氧阴离子自由基的清除作用。
补充资料:看纺织印染中应用纳米材料和纳米技术

纺织印染中应用纳米材料和纳米技术时,除了要解决纳米材料的制备技术之外,重要的是要解决好纳米材料的应用技术,其中关键问题是使纳米粒子和纺织印染材料的基本成分(即聚合物材料)之间处于适当的结合状态。印染中,纳米粒子在聚合物基体中的分散和纳米粒子在聚合物表面的结合是主要的应用技术问题。  


    制备聚合物/无机纳米复合材料的直接分散法,适用于各种形态的纳米粒子。印染中纳米粒子的使用一般采用直接分散法。但是由于纳米粒子存在很大的界面自由能,粒子极易自发团聚,利用常规的共混方法不能消除无机纳米粒子与聚合物基体之间的高界面能差。因此,要将无机纳米粒子直接分散于有机基质中制备聚合物纳米复合材料,必须通过必要的化学预分散和物理机械分散打开纳米粒子团聚体,将其均匀分散到聚合物基体材料中并与基体材料有良好的亲和性。直接分散法可通过以下途径完成分散和复合过程:  


    高分子溶液(或乳液)共混:首先将聚合物基体溶解于适当的溶剂中制成溶液(或乳液),然后加入无机纳米粒子,利用超声波分散或其他方法将纳米粒子均匀分散在溶液(或乳液)中。有人将环氧树脂溶于丙酮后加入经偶联剂处理过的纳米TiO2,搅拌均匀,再加入 40wt%的聚酰胺后固化制得了环氧树脂/TiO2纳米复合材料。还有人将纳米SiO2粒子用硅烷偶联剂处理后,改性不饱和聚酯。  


    熔融共混:将纳米无机粒子与聚合物基体在密炼机、双螺杆等混炼机械上熔融共混。如将PMMA和纳米SiO2粒子熔融共混后,双螺杆造粒制得纳米复合材料。又如利用偶联剂超声作用下处理纳米载银无机抗菌剂粒子,分散制得PP/抗菌剂、PET/抗菌剂、PA/抗菌剂等复合树脂,然后经熔融纺丝工艺加工成抗菌纤维。研究表明,将经过表面处理的纳米抗菌剂粒子通过双螺杆挤出机熔融混炼,在聚合物中可以达到纳米尺度分散,获得了具有良好综合性能的纳米抗菌纤维,对大肠杆菌、金黄色葡萄球菌的抗菌率达到95%以上(美国AATCC-100标准)。  


    机械共混:将偶联剂稀释后与碳纳米管混合,再与超高分子量聚乙烯(UHMWPE)混合放入三头研磨机中研磨两小时以上。将研磨混合物放入模具,热压,制得功能型纳米复合材料。  


    聚合法:利用纳米SiO2粒子填充(Poly(HEMA))制备了纳米复合材料。纳米SiO2粒子首先被羟乙基甲基丙烯酸(HEMA)功能化,然后与HEMA单体在悬浮体系中聚合。还有利用SiO2胶体表面带酸性,加入碱性单体4-乙烯基吡咯进行自由基聚合制得包覆型纳米复合材料。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条