1) key strata theory
关键层理论
1.
Based on analyzing the elemental principle of the key strata theory, the influence of mixed effect of key strata on ground pressure and strata movement was introduced in detail.
在分析关键层理论的基本原理的基础上,详细介绍了有关关键层复合效应对采场矿压与岩层移动的影响,以及综述了关键层理论在采场矿压控制、岩层移动与地表沉陷控制和煤层瓦斯抽放等应用研究方面的最新进展。
2.
The basic concepts of key strata theory in ground control are introduced, the order of two hard strata fracturing and the loading distribution on key strata have been studied, the complex effect between key strata , the characteristics of loading changing on key strata have been revealed.
介绍了岩层控制关键层理论的基本概念,研究了两层硬岩层同步破断的条件及关键层上载荷分布,揭示了关键层破断的复合效应和关键层上载荷的动态与非均布特征。
2) key block theory
关键块体理论
1.
In this paper,the stochastic probability model is drawn into key block theory to study the sliding probability of key block in Jinping II hydropower station conveyor tunnel on the basis of detailed geologic investigation.
在对皮带机隧洞详细的地质调查和研究基础上,把随机概率模型引入关键块体理论,分析锦屏二级水电站皮带机隧洞关键块体的滑落概率,得出迹长和关键块体失稳的概率为反比关系,皮带机隧洞各主要结构面迹长为1~3m的概率较高,含结构面J2的关键块体相对稳定以及顶拱圈的加固将成为皮带机隧洞的支护重点等结论,为设计有效的加固方案提供了依据,具有重要的工程应用价值。
3) critical path theory
关键路径理论
1.
The paper designed an enhanced simulated annealing algorithm(ESA) with back jump tracking in connection with the critical path theory of a job shop scheduling problem.
结合作业车间调度问题的关键路径理论,设计了一种具有多次退火过程的调度算法。
4) critical resource theory
关键性资源理论
6) the Critical Period Hypothesis
关键期假说理论
补充资料:边界层理论
当流体在大雷诺数条件下运动时,可把流体的粘性和导热看成集中作用在流体表面的薄层即边界层内。根据边界层的这一特点,简化纳维-斯托克斯方程,并加以求解,即可得到阻力和传热规律。这一理论是德国物理学家L.普朗特于1904年提出的,它为粘性不可压缩流体动力学的发展创造了条件。
边界层 流体在大雷诺数下作绕流流动时,在离固体壁面较远处,粘性力比惯性力小得多,可以忽略;但在固体壁面附近的薄层中,粘性力的影响则不能忽略,沿壁面法线方向存在相当大的速度梯度,这一薄层叫做边界层。流体的雷诺数越大,边界层越薄。从边界层内的流动过渡到外部流动是渐变的, 所以边界层的厚度δ通常定义为从物面到约等于99%的外部流动速度处的垂直距离,它随着离物体前缘的距离增加而增大。根据雷诺数的大小,边界层内的流动有层流与湍流两种形态。一般上游为层流边界层,下游从某处以后转变为湍流,且边界层急剧增厚。层流和湍流之间有一过渡区。当所绕流的物体被加热(或冷却)或高速气流掠过物体时,在邻近物面的薄层区域有很大的温度梯度,这一薄层称为热边界层。
分析方法 大雷诺数的绕流流动可分为两个区,即很薄的一层边界层区和边界层以外的无粘性流动区。因此,处理粘性流体的方法是:略去粘性和热传导,把流场计算出来,然后用这样的初次近似求得的物体表面上的压力、速度和温度分布作为边界层外边界条件去解这一物体的边界层问题。算出边界层就可算出物面上的阻力和传热量。如此的迭代程序使问题求解大为简化,这就是经典的普朗特边界层理论的基本方法。
边界层方程组 不可压缩流体在大雷诺数的层流情况下绕过平滑壁面的情况(见图)。沿物体壁面的方向为x轴,垂直于壁面的方向为y轴。由于边界层厚度δ比物面特征尺寸L小得多,因此对二维的忽略体积力的纳维-斯托克斯方程逐项进行数量级分析,在忽略数量级小的各项后,可近似认为边界层垂直方向的压力不变,从而得到层流边界层方程组为边界条件为
y=0处
u=0
v=0
y→∞处
u=ue(x,t)
式中pe为主流在边界层外缘上的压力,pe=f(x,t);ρ为流体密度;u、v代表x、y方向的速度分量;t为时间。
边界层的分离 边界层脱离物面并在物面附近出现回流的现象。当边界层外流压力沿流动方向增加得足够快时,与流动方向相反的压差作用力和壁面粘性阻力使边界层内流体的动量减少,从而在物面某处开始产生分离,形成回流区或漩涡,导致很大的能量耗散。绕流过圆柱、圆球等钝头物体后的流动,角度大的锥形扩散管内的流动是这种分离的典型例子。分离区沿物面的压力分布与按无粘性流体计算的结果有很大出入,常由实验决定。边界层分离区域大的绕流物体,由于物面压力发生大的变化,物体前后压力明显不平衡,一般存在着比粘性摩擦阻力大得多的压差阻力(又称形阻)。当层流边界层在到达分离点前已转变为湍流时,由于湍流的强烈混合效应,分离点会后移。这样,虽然增大了摩擦阻力,但压差阻力大为降低,从而减少能量损失。
边界层 流体在大雷诺数下作绕流流动时,在离固体壁面较远处,粘性力比惯性力小得多,可以忽略;但在固体壁面附近的薄层中,粘性力的影响则不能忽略,沿壁面法线方向存在相当大的速度梯度,这一薄层叫做边界层。流体的雷诺数越大,边界层越薄。从边界层内的流动过渡到外部流动是渐变的, 所以边界层的厚度δ通常定义为从物面到约等于99%的外部流动速度处的垂直距离,它随着离物体前缘的距离增加而增大。根据雷诺数的大小,边界层内的流动有层流与湍流两种形态。一般上游为层流边界层,下游从某处以后转变为湍流,且边界层急剧增厚。层流和湍流之间有一过渡区。当所绕流的物体被加热(或冷却)或高速气流掠过物体时,在邻近物面的薄层区域有很大的温度梯度,这一薄层称为热边界层。
分析方法 大雷诺数的绕流流动可分为两个区,即很薄的一层边界层区和边界层以外的无粘性流动区。因此,处理粘性流体的方法是:略去粘性和热传导,把流场计算出来,然后用这样的初次近似求得的物体表面上的压力、速度和温度分布作为边界层外边界条件去解这一物体的边界层问题。算出边界层就可算出物面上的阻力和传热量。如此的迭代程序使问题求解大为简化,这就是经典的普朗特边界层理论的基本方法。
边界层方程组 不可压缩流体在大雷诺数的层流情况下绕过平滑壁面的情况(见图)。沿物体壁面的方向为x轴,垂直于壁面的方向为y轴。由于边界层厚度δ比物面特征尺寸L小得多,因此对二维的忽略体积力的纳维-斯托克斯方程逐项进行数量级分析,在忽略数量级小的各项后,可近似认为边界层垂直方向的压力不变,从而得到层流边界层方程组为边界条件为
y=0处
u=0
v=0
y→∞处
u=ue(x,t)
式中pe为主流在边界层外缘上的压力,pe=f(x,t);ρ为流体密度;u、v代表x、y方向的速度分量;t为时间。
边界层的分离 边界层脱离物面并在物面附近出现回流的现象。当边界层外流压力沿流动方向增加得足够快时,与流动方向相反的压差作用力和壁面粘性阻力使边界层内流体的动量减少,从而在物面某处开始产生分离,形成回流区或漩涡,导致很大的能量耗散。绕流过圆柱、圆球等钝头物体后的流动,角度大的锥形扩散管内的流动是这种分离的典型例子。分离区沿物面的压力分布与按无粘性流体计算的结果有很大出入,常由实验决定。边界层分离区域大的绕流物体,由于物面压力发生大的变化,物体前后压力明显不平衡,一般存在着比粘性摩擦阻力大得多的压差阻力(又称形阻)。当层流边界层在到达分离点前已转变为湍流时,由于湍流的强烈混合效应,分离点会后移。这样,虽然增大了摩擦阻力,但压差阻力大为降低,从而减少能量损失。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条