1) Compressor
[英][kəm'presə(r)] [美][kəm'prɛsɚ]
压气机
1.
Fan/compressor aero design trend and challenge on the development of high bypass ratio turbofan;
风扇/压气机气动设计技术发展趋势——用于大型客机的大涵道比涡扇发动机
2.
Unsteady numerical simulation on transonic compressor with screwed slots casing treatment;
跨声压气机缝式处理机匣非定常模拟研究
3.
Investigation of off design performance of a transonic compressor with circumferential grooves;
跨声压气机周向槽处理机匣非设计工况研究
2) Air compressor
压气机
1.
he first 20 steps of the inherent frequency of the blade in a certain type of air compressor on the aviation motors was caculated with FEM method.
利用有限元法对航空发动机某型号压气机叶片的前二十阶固有频率进行了计算,并通过实验测出了叶片的前四阶固有频率,计算值和实测值基本吻合,为进一步分析叶片的振动响应和确定该型叶片的工作范围提供了依据。
2.
Working theories and technique features of a new air compressor-turbine module driven by high-speed electric motor were introduced.
介绍了一种高速电机驱动的新型涡轮-压气机组件的工作原理和设计方法,并对组件进行了性能试验。
3) axial compressor
压气机
1.
Bleed pipelines, connecting the axial compressor and the turbine, are important components during the operation of the gas turbine.
燃气轮机的压气机抽气配管是燃气轮机设计以及运行使用中的一个重要环节,是一组连接燃气轮机压气机和透平的通流部件。
2.
Results show that the frequency and rotating direction of inlet distortion are most important factors affecting stability of axial compressor.
在低速大尺寸单级压气机实验器上,实验研究了动态进气畸变对压气机稳定边界的影响。
3.
Through the measurement of two-dimensional flow field after a low-pressure axial compressor rotor stage with spherical five-holes pressure-probe on a full size compressor test rig, characteristics of the steady state flow were revealed.
在全尺寸压气机试验台上,用球形五孔压力探针测量了低压压气机转子后的二维流场,揭示了该型压气机转子后稳态流场的特点,并提出改进方向。
4) helium compressor
氦气压气机
1.
Furthermore,the performance of the helium compressor in a helium circulation-based turbo-generator unit is one of the decisive factors ensuring a high efficiency of electric power generation.
本文利用Numeca数值模拟软件对一亚音速轴流氦气压气机试验机进行了气动性能及准数关系研究,分析了气流在叶栅中的流动机理,探讨了等雷诺数下相似准数对压气机叶片性能的影响。
2.
By analyzing the features of the three-dimensional numerical simulation results for the design scheme of a helium compressor,given were the design direction and guiding principle for its three-dimensional optimized modification design.
对某氦气压气机设计方案三维数值模拟计算结果特点进行分析,指出了三维优化改型设计方向和指导原则,通过调整叶片厚度分布、叶片尾缘型线曲率和采用端弯技术等方法,对原型氦气压气机气动设计方案进行了全三维优化设计,对比分析三维优化设计前后数值模拟计算结果,三维优化设计后压气机效率提高2个百分点,有效控制了二次流动进一步发展。
5) charging compressor
充气压气机
6) dry compressor
气冷压气机
补充资料:压气机
燃气涡轮发动机中利用高速旋转的叶片给空气作功以提高空气压力的部件。压气机由涡轮驱动,其主要性能参数有:转速、空气流量、增压比和效率等。压气机出口空气总压与进口空气总压之比称为压气机增压比,增压比相同时,理论上所需的压缩功与实际消耗的机械功之比称为压气机效率。压气机可分为离心式与轴流式两大类,兼有两类特点的称为混合式压气机。按气流流入压气机转子叶片的相对速度,压气机又可分为亚音速的、跨亚音速的和超音速的三种。
离心式压气机 离心式压气机由导风轮、叶轮、扩压器等组成(图1)。空气由进气道进入压气机、经过与叶轮一起旋转的导风轮的导引进入叶轮。在高速旋转叶轮作用下,空气由叶轮中心被离心力甩向叶轮外缘,压力也逐渐提高,由叶轮流出的空气进入扩压器后速度降低,压力再次提高,最后由出气管流出压气机。
离心式压气机的空气流量为数公斤至数十公斤每秒。亚音速离心式压气机的增压比约为4.5,超音速离心式压气机可达8~10,效率约为0.78。
轴流式压气机 空气在轴流式压气机中主要沿轴向流动。它由转子(又称工作轮,图2有色部分)和静子(又称整流器,图2 无色部分)两部分组成。由一排转子叶片和一排静子叶片组成一级,单级的增压比很小,为了获得较高的增压比,一般都采用如图所示的多级结构。空气在压气机中被逐级增压后,密度和温度也逐级提高。
轴流式压气机的空气流量为几公斤每秒到二百公斤每秒,单级增压比一般约为1.1~2.0,效率约为0.85~0.88。多级轴流式压气机的增压比可达25以上。轴流式压气机的面积小,增压比和效率都高,已广泛用于燃气涡轮发动机中。
压气机特性 压气机都是按给定的进气条件、转速、增压比和空气流量设计的,但其工作状态(工作环境的温度、压力、转速和空气流量等)实际上是变化的,压气机在各种工作状态下的性能称为压气机特性。在一定转速下,当压气机的增压比增大到某一数值时,压气机就会进入不稳定的工作状态,很容易发生喘振,使整个系统产生低频大振幅的气流轴向脉动,甚至会发生瞬间气流倒流的现象。压气机喘振可能导致叶片断裂、结构损坏、燃烧室超温和发动机熄火停车。为避免发生喘振可以采取下列措施:
①按转速调节某几级整流叶片的安装角,使流入的气流具有合适的迎角,避免气流分离而造成喘振。
②将多级压气机分成2个不同转速的转子,分别由高、低压涡轮驱动。有些发动机采用3转子结构。
③多级轴流式压气机从中间级放气,以增加前面各级的空气流量,避免气流的迎角过大,产生分离,出现喘振。
④多级轴流式压气机在第一级压气机的机匣上开槽,使第一级工作轮叶片尖端部分的气流通过机匣上的槽道产生回流,减小气流的迎角,这种方法称为机匣处理。
叶片振动 压气机叶片常因振动而产生裂纹甚至断裂。振动分为两类:一类是在周期性外力作用下发生的叶片振动,称为强迫振动。周期性的外力来自工作轮叶片和整流器叶片之间的相互干扰、工作轮叶片的旋转失速等。另一类是由叶片自身的振动以及与相邻叶片自身振动相互干扰而形成的,称为叶片自激振动或叶片颤振。为了避免叶片颤振,工作轮上两相邻叶片可采用不同的厚度,以改变它们的固有频率。
离心式压气机 离心式压气机由导风轮、叶轮、扩压器等组成(图1)。空气由进气道进入压气机、经过与叶轮一起旋转的导风轮的导引进入叶轮。在高速旋转叶轮作用下,空气由叶轮中心被离心力甩向叶轮外缘,压力也逐渐提高,由叶轮流出的空气进入扩压器后速度降低,压力再次提高,最后由出气管流出压气机。
离心式压气机的空气流量为数公斤至数十公斤每秒。亚音速离心式压气机的增压比约为4.5,超音速离心式压气机可达8~10,效率约为0.78。
轴流式压气机 空气在轴流式压气机中主要沿轴向流动。它由转子(又称工作轮,图2有色部分)和静子(又称整流器,图2 无色部分)两部分组成。由一排转子叶片和一排静子叶片组成一级,单级的增压比很小,为了获得较高的增压比,一般都采用如图所示的多级结构。空气在压气机中被逐级增压后,密度和温度也逐级提高。
轴流式压气机的空气流量为几公斤每秒到二百公斤每秒,单级增压比一般约为1.1~2.0,效率约为0.85~0.88。多级轴流式压气机的增压比可达25以上。轴流式压气机的面积小,增压比和效率都高,已广泛用于燃气涡轮发动机中。
压气机特性 压气机都是按给定的进气条件、转速、增压比和空气流量设计的,但其工作状态(工作环境的温度、压力、转速和空气流量等)实际上是变化的,压气机在各种工作状态下的性能称为压气机特性。在一定转速下,当压气机的增压比增大到某一数值时,压气机就会进入不稳定的工作状态,很容易发生喘振,使整个系统产生低频大振幅的气流轴向脉动,甚至会发生瞬间气流倒流的现象。压气机喘振可能导致叶片断裂、结构损坏、燃烧室超温和发动机熄火停车。为避免发生喘振可以采取下列措施:
①按转速调节某几级整流叶片的安装角,使流入的气流具有合适的迎角,避免气流分离而造成喘振。
②将多级压气机分成2个不同转速的转子,分别由高、低压涡轮驱动。有些发动机采用3转子结构。
③多级轴流式压气机从中间级放气,以增加前面各级的空气流量,避免气流的迎角过大,产生分离,出现喘振。
④多级轴流式压气机在第一级压气机的机匣上开槽,使第一级工作轮叶片尖端部分的气流通过机匣上的槽道产生回流,减小气流的迎角,这种方法称为机匣处理。
叶片振动 压气机叶片常因振动而产生裂纹甚至断裂。振动分为两类:一类是在周期性外力作用下发生的叶片振动,称为强迫振动。周期性的外力来自工作轮叶片和整流器叶片之间的相互干扰、工作轮叶片的旋转失速等。另一类是由叶片自身的振动以及与相邻叶片自身振动相互干扰而形成的,称为叶片自激振动或叶片颤振。为了避免叶片颤振,工作轮上两相邻叶片可采用不同的厚度,以改变它们的固有频率。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条