|
1) optimal placement
优化布置
1.
This paper introduces the serial method for optimal placement of sensors in the modal tests of bridge structure.
介绍桥梁结构模态测试中传感器优化布置的序列法,该法以模态置信度MAC矩阵的最大非对角元为目标函数,采用逐步累积或逐步消去的方法对传感器进行优化布置,直到传感器数目最理想、位置最优。
2.
This paper presents the theory of optimal placement of the sensor measurement points of overall bridge based on the analysis results of finite element model,the nerve cell network and generalized genetic algorithm,and also gives the finalized placement of the sensor measurement points for structural health monitoring system of the Bridge.
介绍以有限元模型分析结果为基础,基于神经网络及遗传算法的全桥传感器测点优化布置理论,最终形成的该桥结构健康监测系统的传感器测点布置。
3.
The effectiveness of controlling responses depends not only on capacity of MR damper and control algorithm,but also on optimal placement of MR damper.
本文首先对近年来出现的各种优化布置方法进行了介绍,然后提出了一种新的基于改进遗传算法和等效二次型性能指标的优化方法,并论述了这些方法的优缺点,最后采用五种优化布置方法并结合一个具体实例进行了磁流变阻尼器的优化布置研究,给出了磁流变阻尼器优化布置的几个原则。
2) optimal layout
优化布置
1.
Some techniques for optimal layout of detection stations in early warning system are compare.
笔者对预警系统监测站的优化布置方法作了比较和分析。
2.
The results by current method are multi-valued, not certain to achieve optimal layout.
目前确定探测器安装间距的方法是根据其保护面积与半(直)径在极限曲线查找布置探测器的列间距a和行间距b,其结果存在多值性,不一定能实现优化布置。
3.
Based on the graphic theory and Ant Colony Algorithms,to optimize the tree water-pipe network layout,separate by the least total length and minimal cost of pipe network as the optimal layout objective.
配水树状管网优化布置属于典型的组合优化问题。
3) optimal distribution
优化布置
1.
Application of optimal distribution of pressure measurement points and state estimation in Xi an water distribution network;
测压点优化布置及状态估计在西安市给水管网中的应用
2.
It applies the control method of TMD(linear absorbing-vibration and nonlinear consuming-energy Wind-induced response) to analysis of the TV tower through optimal distribution of the position and the inertial mass effect of the TMD and design the control device.
本文以深圳市梧桐山电视塔桅杆结构风振控制项目为背景,分析了风荷载的动力特性,给出了脉动风荷载的模拟方法;采用调谐质量阻尼控制方法和线性吸振、非线性耗能的结构控制策略,对控制装置进行了系统设计,分析了装置的惯性质量效应并提出了装置的优化布置方法;在模拟脉动风荷载作用下采用振型分解和时程分析相结合的方法,对结构进行动力分析和振动控制效果计算,为TMD高耸结构抗风设计提供了依据。
4) optimal location
优化布置
1.
Study on Traffic Detector Optimal Location for Dynamic OD Estimation;
动态OD估计的交通检测器优化布置研究
2.
(Under) the restriction of the budget,the coverage degree of the traffic flow information of the road network,the detection of key road(section,) the elimination of duplicate detector an optimal location model of the traffic detectors is built up.
论文在探讨了动态交通分配和动态OD估计背景下的交通检测器优化问题的基础上,提出了基于DTA的动态OD估计方法的交通检测器布置原则;从预算,对路网中交通流量信息的覆盖程度,对关键路段的检测、对重复检测器的剔除等方面对路网交通检测方案进行约束,建立了交通检测器优化布置模型;最后将遗传算法用于交通检测器优化布置模型的求解,证明了基于DTA的动态OD估计方法的交通检测器优化布置模型的有效性。
3.
The sensitivity equation of flowrate in the water distribution system was established on the basis of perturbation analysis,and the optimal location of flow monitoring stations was determined by sensitivity analysis.
在摄动分析的基础上建立了给水管网的流量敏感度方程,通过敏感度分析给出了流量监测点的优化布置方法,并通过一小型给水管网算例验证了该方法的有效性和可靠性。
5) optimum arrangement
优化布置
1.
Approach on roadway optimum arrangement at deep mining area of steep-grade mine;
急倾斜矿井深部采区巷道优化布置的探索
2.
The influences of the reflective coefficient of the double layer soil, the top layer soil thickness and the grounding grid area on the optimum arrangement are analyzed numerically.
分析得到了双层土壤结构时 ,使地网优化布置的最优压缩比的计算公式 ,便于工程设计人员采用 ,提高接地系统的安全
6) layout optimization
布置优化
1.
Study on the layout optimization of flood-discharging structure for Xiaowan Hydropower Station;
小湾水电站泄洪建筑物布置优化研究
补充资料:ANSYS SOLID65环向布置钢筋的例子
ANSYS SOLID65环向布置钢筋的例子 ! 一个管道,环向配筋率为1%,纵向配筋率为0.5%,径向配筋率为0.1% ! 作者: 陆新征 清华大学土木系 ! FINISH /CLEAR /PREP7 !* ! 单元属性 ET,1,SOLID65 !* KEYOPT,1,1,0 KEYOPT,1,5,0 KEYOPT,1,6,0 KEYOPT,1,7,1 !* !实参数1:不同方向配筋 R,1,2,.001, , ,2, .01, RMORE, 90, ,2,.005 ,90 ,90 , !材料属性 !混凝土基本材料属性 MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,30E2 MPDATA,PRXY,1,,.2 !屈服准则 TB,MISO,1,1,5, TBTEMP,0 TBPT,,0.0005,15 TBPT,,0.001,21 TBPT,,0.0015,24 TBPT,,0.002,27 TBPT,,0.003,24 !破坏准则 TB,CONC,1,1,9, TBTEMP,0 TBDATA,,.5,.9,3,30,, TBDATA,,,,1,,, MPTEMP,,,,,,,, MPTEMP,1,0 !钢材基本属性 MPDATA,EX,2,,200E3 MPDATA,PRXY,2,,.27 !屈服准则 TB,BISO,2,1,2, TBTEMP,0 TBDATA,,310,2E3,,,, ! 管道内径和外径 CYL4,0,0,3000, , , ,10000 CYL4,0,0,2000, , , ,10000 VSBV, 1, 2 ! 定义局部柱坐标 CSWPLA,11,1,1,1, KWPAVE, 11 WPRO,,-90.000000, VSBW, 3 WPCSYS,-1,0 KWPAVE, 1 WPRO,,,-90.000000 VSBW,ALL ESIZE,500,0, ! 注意:设定单元局部坐标 VATT, 1, 1, 1, 11 !* VSWEEP,ALL /DEVICE,VECTOR,1 /ESHAPE,1.0 /REPLO ! 注意:红色代表最大配筋方向,绿色代表其次,蓝色表示最小配筋方向
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条
|