低温多晶硅的全称是“low temperature poly-silicon(ltps,多晶硅又简称为p-si,下同)”,它是多晶硅技术的一个分支。对lcd显示器来说,采用多晶硅液晶材料有许多优点,如薄膜电路可以做得更薄更小、功耗更低等等。但在多晶硅技术发展的初期,为了将玻璃基板从非晶硅结构(a-si)转变为多晶硅结构,就必须借助一道激光退火(laser anneal)的高温氧化工序,此时玻璃基板的温度将超过摄氏1000度。众所周知,普通玻璃在此高温下就会软化熔融,根本无法正常使用,而只有石英玻璃才能够经受这样的高温处理。而石英玻璃不仅价格昂贵且尺寸都较小,无法作为显示器的面板,厂商很自然选择了廉价的非晶硅材料(a-si),这也是我们今天所见到的情形。不过,业界并没有因此放弃努力,发展低温多晶硅技术成为共识,在经过多年的努力之后,低温多晶硅终于逐步走入现实。与传统的高温多晶硅相比,低温多晶硅虽然也需要激光照射工序,但它采用的是准分子激光作为热源,激光经过透射系统后,会产生能量均匀分布的激光束并被投射于非晶硅结构的玻璃基板上,当非晶硅结构的玻璃基板吸收准分子激光的能量后,就会转变成为多晶硅结构。由于整个处理过程是在摄氏500-600度以下完成,普通的玻璃基板也可承受,这就大大降低了制造成本,将多晶硅技术引入lcd显示器领域也就完全可行。而除了制造成本降低外,低温多晶硅技术的优点还体现在以下几个方面。
电子迁移速率更快
电子迁移率以“cm2/v-sec”为单位,指的是每秒钟每伏特电压下电子的运动范围大小。传统的a-si非晶硅材料lcd,电子迁移率指标多数都在0.5cm2/v-sec以内,而p-si多晶硅面板的电子迁移率可达到200cm2/v-sec,整整是非晶硅材料的400倍之多。由于在该项指标上多晶硅材料占据绝对优势,使得多晶硅lcd的反应速度极快,体现在显示器产品中便是响应时间可以做到更短,更好满足大屏幕lcd的实用需求。
薄膜电路面积更小
我们知道,液晶材料通过控制光的通断来显示不同的画面,这样,每个液晶像素都必须有一个专门的tft薄膜电路。这个薄膜电路与液晶像素一一对应,且成为像素的一部分,由于电路本身并不透光,来自背光源的光线便会被它遮挡。薄膜电路占据的面积越大,能透过的光能就越少,体现在最终显示上就是液晶像素较暗。而如果薄膜电路占据的面积较小,透过的光线就较多,在背光源不变的情况下,液晶像素也可以拥有较高的输出亮度。lcd业界引入“开口率(aperture ratio)”指标来描述此种情况,开口率是指每个像素可透光的区域与像素总面积的比例。显然,薄膜电路占据的面积越小,可透光区域就越大,开口率越高,整体画面就越亮。
传统a-si非晶硅材料在开口率方面的表现难如人意,原因就在于对应的薄膜电路体积较大,虽然许多厂商想尽办法提升该项指标,但收效甚微。而p-si多晶硅材料在这方面具有绝对的优势,用该技术制造的lcd面板,薄膜电路可以做得更小、更薄,电路本身的功耗也较低。更重要的是,较小的薄膜电路让多晶硅lcd拥有更高的开口率,在背光模块不变的情况下可拥有更出色的亮度及色彩输出。换个角度考虑,采用多晶硅材料也可以在确保亮度不变的前提下,有效降低背光源的功率,整机的功耗将因此大大降低,这对于笔记本lcd屏来说具有相当积极的意义。
更高的分辨率
越来越多的液晶厂商开始重视p-si多晶硅技术。如前所述,p-si多晶硅面板的薄膜电路尺寸极小,开口率比传统非晶硅面板高得多,对应的lcd面板要做到高分辨率不仅相对容易,且可以拥有更为出色的显示效果。