1) air blow tank with machinery agitation
机械搅拌通风发酵罐
1.
The CFD(Computational Fluid Dynamic)model for air blow tank with machinery agitation is set up accurately by model tools,the internal gas-liquid flows field is simulation using two-phase Euler-Euler model.
本文采用实体建模、CFD(计算流体动力学)前置处理器等工具建立机械搅拌通风发酵罐CFD计算模型,应用两相流的欧拉模型模拟发酵罐内流场的气、液两相流动。
2) stirred fermenter
机械搅拌发酵罐
4) stirred tank fermenter
搅拌发酵罐
1.
Chlorella vulgaris was heterotrophically cultured in 5, 50, 200, 800, and 4 000 L stirred tank fermenters with glucose feeding,which gave significant improvement in cell density and productivity compared to batch culture.
应用流加工艺在 5,50 ,2 0 0 ,80 0 ,4 0 0 0L机械搅拌发酵罐中大规模异养培养小球藻 。
5) mechanical stirring type fermenting equipment
机械搅拌发酵设备
6) jet stirred fermentation cylinder
射流搅拌发酵罐
1.
Experiments were carried out to investigate the gas holdup and bubble diameter in the free jet section of a jet stirred fermentation cylinder .
研究了气速、清液层高度、混合器尺寸和倾斜角度等因素对射流搅拌发酵罐自由射流气泡区的气含率与气泡直径的影响。
补充资料:机械搅拌
依靠搅拌器在搅拌槽中转动对液体进行搅拌,是化工生产中将气体、液体或固体颗粒分散于液体中的常用方法。
工业上常用的搅拌槽是一个圆筒形容器(图1),有时槽外装有夹套,或在槽内设有蛇管等换热器件,用以加热或冷却槽内物料。槽壁内侧常装有几条垂直挡板,用以消除液体高速旋转所造成的液面凹陷旋涡,并可强化液流的湍动,以增强混合效果。搅拌器一般装在转轴端部,通常从槽顶插入液层(大型搅拌槽也有用底部伸入式的)。有时在搅拌器外围设置圆筒形导流筒,促进液体循环,消除短路和死区。对于高径比大的槽体,为使全槽液体都得到良好搅拌,可在同一转轴上安装几组搅拌器。搅拌器轴用电动机通过减速器带动。如果过程中物料性质有变化,最好能用多级变速或无级变速。带动搅拌器的另一种方法是磁力传动,即在槽外施加旋转磁场,使设在槽内的磁性元件旋转,带动搅拌器搅拌液体。采用磁力传动可回避高压动密封,气密性很好。
搅拌器的类型 主要有下列几种:
①旋桨式搅拌器 由2~3片推进式螺旋桨叶构成(图2),工作转速较高,叶片外缘的圆周速度一般为5~15m/s。旋桨式搅拌器主要造成轴向液流,产生较大的循环量,适用于搅拌低粘度 (<2Pa·s)液体、乳浊液及固体微粒含量低于10%的悬浮液。搅拌器的转轴也可水平或斜向插入槽内,此时液流的循环回路不对称,可增加湍动,防止液面凹陷。
②涡轮式搅拌器 由在水平圆盘上安装2~4片平直的或弯曲的叶片所构成(图3)。桨叶的外径、宽度与高度的比例,一般为20:5:4,圆周速度一般为 3~8m/s。涡轮在旋转时造成高度湍动的径向流动,适用于气体及不互溶液体的分散和液液相反应过程。被搅拌液体的粘度一般不超过25Pa·s。
③桨式搅拌器 有平桨式和斜桨式两种。平桨式搅拌器由两片平直桨叶构成。桨叶直径与高度之比为 4~10,圆周速度为1.5~3m/s,所产生的径向液流速度较小。斜桨式搅拌器(图4)的两叶相反折转45°或60°,因而产生轴向液流。桨式搅拌器结构简单,常用于低粘度液体的混合以及固体微粒的溶解和悬浮。
④锚式搅拌器 桨叶外缘形状与搅拌槽内壁要一致(图5),其间仅有很小间隙,可清除附在槽壁上的粘性反应产物或堆积于槽底的固体物,保持较好的传热效果。桨叶外缘的圆周速度为0.5~1.5m/s,可用于搅拌粘度高达 200Pa·s的牛顿型流体和拟塑性流体(见粘性流体流动。唯搅拌高粘度液体时,液层中有较大的停滞区。
⑤螺带式搅拌器 螺带的外径与螺距相等(图6),专门用于搅拌高粘度液体(200~500Pa·s)及拟塑性流体,通常在层流状态下操作。
搅拌功率 搅拌器向液体输出的功率P,按下式计算:
P=Kd5N3ρ式中K为功率准数,它是搅拌雷诺数Rej(Rej=d2Nρ/μ)的函数;d和N 分别为搅拌器的直径和转速;ρ和μ分别为混合液的密度和粘度。对于一定几何结构的搅拌器和搅拌槽,K与Rej的函数关系可由实验测定,将这函数关系绘成曲线,称为功率曲线(图7)。
搅拌器的类型、尺寸及转速,对搅拌功率在总体流动和湍流脉动之间的分配都有影响。一般说来,涡轮式搅拌器的功率分配对湍流脉动有利,而旋桨式搅拌器对总体流动有利。对于同一类型的搅拌器来说,在功率消耗相同的条件下,大直径、低转速的搅拌器,功率主要消耗于总体流动,有利于宏观混合。小直径、高转速的搅拌器,功率主要消耗于湍流脉动,有利于微观混合。搅拌器的放大是与工艺过程有关的复杂问题,至今只能通过逐级经验放大,根据取得的放大判据,外推至工业规模。
工业上常用的搅拌槽是一个圆筒形容器(图1),有时槽外装有夹套,或在槽内设有蛇管等换热器件,用以加热或冷却槽内物料。槽壁内侧常装有几条垂直挡板,用以消除液体高速旋转所造成的液面凹陷旋涡,并可强化液流的湍动,以增强混合效果。搅拌器一般装在转轴端部,通常从槽顶插入液层(大型搅拌槽也有用底部伸入式的)。有时在搅拌器外围设置圆筒形导流筒,促进液体循环,消除短路和死区。对于高径比大的槽体,为使全槽液体都得到良好搅拌,可在同一转轴上安装几组搅拌器。搅拌器轴用电动机通过减速器带动。如果过程中物料性质有变化,最好能用多级变速或无级变速。带动搅拌器的另一种方法是磁力传动,即在槽外施加旋转磁场,使设在槽内的磁性元件旋转,带动搅拌器搅拌液体。采用磁力传动可回避高压动密封,气密性很好。
搅拌器的类型 主要有下列几种:
①旋桨式搅拌器 由2~3片推进式螺旋桨叶构成(图2),工作转速较高,叶片外缘的圆周速度一般为5~15m/s。旋桨式搅拌器主要造成轴向液流,产生较大的循环量,适用于搅拌低粘度 (<2Pa·s)液体、乳浊液及固体微粒含量低于10%的悬浮液。搅拌器的转轴也可水平或斜向插入槽内,此时液流的循环回路不对称,可增加湍动,防止液面凹陷。
②涡轮式搅拌器 由在水平圆盘上安装2~4片平直的或弯曲的叶片所构成(图3)。桨叶的外径、宽度与高度的比例,一般为20:5:4,圆周速度一般为 3~8m/s。涡轮在旋转时造成高度湍动的径向流动,适用于气体及不互溶液体的分散和液液相反应过程。被搅拌液体的粘度一般不超过25Pa·s。
③桨式搅拌器 有平桨式和斜桨式两种。平桨式搅拌器由两片平直桨叶构成。桨叶直径与高度之比为 4~10,圆周速度为1.5~3m/s,所产生的径向液流速度较小。斜桨式搅拌器(图4)的两叶相反折转45°或60°,因而产生轴向液流。桨式搅拌器结构简单,常用于低粘度液体的混合以及固体微粒的溶解和悬浮。
④锚式搅拌器 桨叶外缘形状与搅拌槽内壁要一致(图5),其间仅有很小间隙,可清除附在槽壁上的粘性反应产物或堆积于槽底的固体物,保持较好的传热效果。桨叶外缘的圆周速度为0.5~1.5m/s,可用于搅拌粘度高达 200Pa·s的牛顿型流体和拟塑性流体(见粘性流体流动。唯搅拌高粘度液体时,液层中有较大的停滞区。
⑤螺带式搅拌器 螺带的外径与螺距相等(图6),专门用于搅拌高粘度液体(200~500Pa·s)及拟塑性流体,通常在层流状态下操作。
搅拌功率 搅拌器向液体输出的功率P,按下式计算:
P=Kd5N3ρ式中K为功率准数,它是搅拌雷诺数Rej(Rej=d2Nρ/μ)的函数;d和N 分别为搅拌器的直径和转速;ρ和μ分别为混合液的密度和粘度。对于一定几何结构的搅拌器和搅拌槽,K与Rej的函数关系可由实验测定,将这函数关系绘成曲线,称为功率曲线(图7)。
搅拌器的类型、尺寸及转速,对搅拌功率在总体流动和湍流脉动之间的分配都有影响。一般说来,涡轮式搅拌器的功率分配对湍流脉动有利,而旋桨式搅拌器对总体流动有利。对于同一类型的搅拌器来说,在功率消耗相同的条件下,大直径、低转速的搅拌器,功率主要消耗于总体流动,有利于宏观混合。小直径、高转速的搅拌器,功率主要消耗于湍流脉动,有利于微观混合。搅拌器的放大是与工艺过程有关的复杂问题,至今只能通过逐级经验放大,根据取得的放大判据,外推至工业规模。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条