1) extra-low oxygen steel
超低氧钢
1.
VIM Refining Extra-Low Oxygen Steel using CaO Crucible;
用氧化钙坩埚真空感应熔炼超低氧钢
2.
The relative stability of refractory materials at high temperature is discussed,and so are the thermodynamic conditions and kinetics of oxygen contamination of molten steel from lining material during the refining of extra-low oxygen steel under vacuum.
研究高温下耐火材料的相对稳定性及在真空熔炼超低氧钢过程中炉衬材料向钢液供氧的热力学条件和动力学规律。
2) Ultra-Low Oxygen Spring Steel
超低氧弹簧钢
1.
A Study on Thermodynamics of Dephosphorization and Rephosphorization of Ultra-Low Oxygen Spring Steel;
超低氧弹簧钢脱磷回磷的热力学研究
2.
A Study on Inclusion in Ultra-low Oxygen Spring Steel 60Si2Mn;
超低氧弹簧钢60Si2Mn的夹杂物研究
3) ULC steel
超低碳钢
1.
Study on the optimum process of refining ULC steel by RH degasser
RH冶炼超低碳钢的最优工艺研究
2.
Inclusions and total oxygen content in ultra-low carbon(ULC) steel were studied for the control of cluster inclusions in ULC steel.
为控制超低碳钢中的簇状夹杂物,对超低碳钢中的夹杂物和与全氧含量的关系进行了研究。
3.
The polarization curve of the ULC steel with titanium and niobium was measured to determine the suitable electrolytic parameters for preparation of TEM carbon replica samples.
测定了一种复合添加钛、铌超低碳钢的极化曲线,选用合适的电流密度和电解时间以碳复型方法萃取钢中的析出相制备透射电镜观察用样品。
4) ultra-low-carbon steel
超低碳钢
1.
Development on ultra-low-carbon steel mold powder of Baosteel;
宝钢超低碳钢保护渣的开发
2.
Effect of Mould Shielded Fluxes on Concasting Billet Surface Carbonization of Ultra-Low-Carbon Steel;
结晶器保护渣对超低碳钢连铸坯表面渗碳的影响
3.
Composite Treatment of Concasting Mold Flux for Ultra-Low-Carbon Steel;
超低碳钢连铸结晶器用保护渣的超细复合处理
5) Ultra Low Carbon Steel
超低碳钢
1.
Comparison of different flow stress models for ultra low carbon steels during warm deformation
超低碳钢低温变形流动应力模型的比较
2.
To address the characteristics of deformation behavior and flowing stress of ultra low carbon steel in the hot-strip mill processing,a set of simulations were performed with THERMECMASTOR-Z thermo dynamic simulator.
采用 THERMECMASTOR-Z 热/力模拟试验机研究了超低碳钢在铁素体区轧制过程的形变特征和流变应力,采用双段压缩试验方法研究了不同变形温度、道次间隔时间和变形程度对钢的流变应力和组织的影响。
3.
The reason and mathematic analysis for carbon pick up from mold flux have been investigated in ultra low carbon steel.
探讨了保护渣引起超低碳钢增碳的机理并进行了数学分析。
6) ultra-low sulfur steel
超低硫钢
1.
Investigation on slag modifier during refining of ultra-low sulfur steel;
超低硫钢冶炼过程钢包渣改质剂的作用
2.
The theoretical analysis and commercial experiment of desulfuration of ladle furnace for the refining of ultra-low sulfur steels are carried out in this paper,the results are: optimizing the composition of slag,increasing the optical basicity,deeply deoxidizing of both molten steel and slag;determining the proper slag weight are the effective methods of increasing the sulfur removal percentage.
对超低硫钢生产过程中LF精炼渣脱硫进行了理论分析与工业试验,结果表明:优化精炼渣成分,提高光学碱度,强化钢水及炉渣脱氧,选择合适的渣量是提高脱硫效率的有效手段;武钢管线钢生产中LF平均脱硫率为55%;CaO-SiO2-Al2O3-MgO(5%)渣系等硫分配比曲线图可指导生产选择合适的炉渣成分。
3.
On the base of theoretic analyzing, the ladle slag modification treating test were done during the melting of ultra-low sulfur steel.
本文在理论分析的基础上,在超低硫钢冶炼过程中对转炉出钢下渣进行了改质处理试验。
补充资料:低合金超高强度钢
低合金超高强度钢
low alloy ultra high-strength steel
夹杂物的数量,从而提高大截面棒材的横向断面收缩率和断裂韧度。按照实际需要和条件,生产低合金超高强度钢多采用下列四种冶炼工艺,即电弧炉加电渣重熔;电弧炉加真空自耗;真空感应炉加电渣重熔和真空感应炉加真空自耗冶炼。 表2 40CrNiZSiZMovA钢中气体含里操华操门阵 表3 40erNiZSiZMovA钢的横向力学性能默介斗 (2)锻、轧加工。低合金超高强度钢具有良好的热加工变形性能,可在900~1150℃范围内进行锻造和轧制。钢的过热敏感性小,加热过程不易产生过热和过烧现象。终止加工变形温度一般控制在850C以上。钢锭经锻压成材的最小锻压比应不小于5。对于要求横向塑性指标的锻件采用多次辙粗和拔长变形工艺,以改善钢的横向性能。锻后和轧后钢材应进行退火或正火加高温回火,获得均匀的显微组织,为切削加工和最终热处理做好准备。 中碳低合金超高强度钢在轧制前加热和退火热处理时容易产生表面脱碳现象,从而造成钢板强度降低、疲劳强度极限下降;严重影响钢的使用,为了防止脱碳,板材特别是薄板应在保护气氛条件下进行退火处理。如条件不具备时,应严格控制退火温度和保温时间,尽量减少因表面脱碳对板材造成不良影响。 (3)焊接。低合金超高强度钢的焊接性主要取决于钢中碳和合金元素的含量。碳含量大于。.35%时,其焊接性恶化。碳含量愈高,其焊接性愈差。主要是因为焊缝和热影响区在焊后空冷形成粗大马氏体组织,容易产生微裂纹。应采用低碳低含氢量高纯度焊丝或焊条焊接。并且在焊前经200一35oC预热,焊后及时进行缓冷和高温回火处理。 (4)表面防护。低合金超高强度钢制作的结构部件对表面缺陷的敏感性较高。在受力条件下,表面缺陷处产生应力集中,因而就容易发生结构件的疲劳破坏或者应力腐蚀延迟断裂。因此,改善结构件表面精度和状态是提高疲劳寿命的有效措施。通常采用表面喷丸强化工艺使零部件表面层形成残余压应力,并使表层晶粒细化,增加位错密度,提高表层屈服强度,降低表面缺陷的有害影响,从而改善和提高零件的疲劳强度,延长使用寿命。如4oCrNiZMoA钢制作的结构件,经喷丸强化后,表层残余压应力达到700~8。。MPa,与不喷丸的零件相比,其疲劳强度提高了40%以上。d lhej}n ehoogaoq旧ngdugong低合金超高强度钢(low alloy ultra high-strcngth steel)合金元素总含量在5%以下,经热处理后的屈服强度大于138OMPa的超高强度钢。钢的强度主要取决于其含碳量。通过淬火加低温回火或等温淬火热处理获得回火马氏体或回火马氏体加贝氏体显微组织以获得高强度和良好的塑性与韧性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条