1) formation fracture
地层裂缝
1.
As a new technology,acoustic and electric imaging well logging can be applied to formation fracture identification, ground stress analysis and structure identification,etc.
声电成像测井作为测井新技术,可以应用于地层裂缝识别、地应力分析、构造识别等方面。
2) fractured formation
裂缝性地层
1.
By investigating and summarizing the classical Nolte G function method and studying the special features of the fractures in the fractured formation, the pressure-decline curve analysis models for the fractured reservoirs were established.
在总结Nolte经典G函数压降曲线分析方法的基础上 ,根据裂缝性地层存在微裂隙的特征 ,建立了裂缝性油气藏小型压裂压力降曲线分析模型。
2.
By investigating and summarizing the classical Nolte G-function method and studying the special features of fractures in the fractured formation, the pressure decline curve analysis model for the fractured reservoir was developed.
在总结Nolte经典G函数压降曲线分析方法的基础上,根据裂缝性地层存在微裂隙的特征,建立了裂缝性油藏小型压裂压降曲线分析模型。
3.
Results of multi-layer models have been shown to assess the feasibility of discerning the fractured formation and predicting the distribution of the fractures by using of the D.
采用均匀各向异性半空间的解析解,验证了文中算法的正确性,给出了多层各向异性地层模型的视电阻率响应曲线,分析了直流电法探测裂缝性地层,估计裂缝分布性状的可能性。
3) naturally fractured formation
天然裂缝地层
1.
Hydraulic fracturing initiation pressure models for directional wells in naturally fractured formation;
天然裂缝地层斜井水力裂缝起裂压力模型研究
2.
Initiation pressure models for hydraulic fracturing of vertical wells in naturally fractured formation;
天然裂缝地层中垂直井水力裂缝起裂压力模型研究
4) low pressure fracturing formation
低压裂缝性地层
5) naturally fractured formation
天然裂缝性地层
1.
Physical simulation of hydraulic fracture propagation in naturally fractured formations;
天然裂缝性地层水力裂缝延伸物理模拟研究
6) earthquake-interlayer sliding fissure
地震层间滑动型地裂缝
补充资料:大型设备基础混凝土裂缝防治
大型设备基础混凝土裂缝防治
protection and treatment for crack during construction of large volume foundation
daxlng shebe一Jiehu hunningtu}iefeng fangZhl大型设备蓦础混凝土裂缝防治(proteetion。ndtreatment for eraek during eonstruetion of large vol-ume foundation)在冶金工厂建设中,设备基础的混凝土约占混凝土工程总量的60%以上。随着冶金设备向大型化发展,设备基础的体积愈趋庞大。以中国上海宝钢工程为例,容积为4063m“的1号高炉,其基础混凝土工程量约为600om3;3座3oot转炉的基础底板的混凝土工程量将近700om“。施工时每次混凝土的浇筑量多在looom3以上。施工中,水泥水化热引起混凝土浇筑块体内部温度和温度应力剧烈变化,以及混凝土的凝结收缩,都会引起对结构整体性、耐久性和强度有影响的混凝土裂缝。防止这种裂缝的产生和对已出现裂缝的有效治理是保证工程质量的关键之一。 裂缝原因和防止原则在大型设备基础的施工中,当混凝土内部温度变化和凝结收缩引起的变形受到约束时,浇筑块体内就要产生应力。当其中的拉应力超过混凝土材料的抗拉极限时就会出现裂缝。对变形的约束有两类情况:一是混凝土浇筑块体内部各质点间因变形量不同而产生相互牵制和影响,称为“自约束”;二是浇筑块体的变形受到外部物体(如地基、相邻结构、下部混凝土浇筑层等)的阻碍,称为“外约束”。 为防止裂缝的产生,应从以下几个方面考虑对策。(1)提高混凝土自身和混凝土结构的抗裂能力。施工中要严格控制材料和施工工艺,使结构质量完全符合设计和规范要求。(2)减少混凝土中的总发热量,降低水泥水化发热速率,合理调剂混凝土在凝结过程中的温度与湿度,以减小温度应力和收缩产生的应力。(3)减弱内、外约束的影响。(4)重视控制温度对防止裂缝产生的决定性作用,在基础施工的全过程中,按阶段进行温度应力分析,确定温度控制指标和技术措施。 沮控防裂措施包括基础设计、混凝土配制、混凝土浇筑与养护、施工中混凝土温度监测四个方面。 基础设计主要措施有:(1)基础混凝土的强度等级应为C巧一C25。(2)对独立的大型钢筋混凝土设备基础不设沉降缝、温度缝等永久变形缝。(3)当基础设置于岩石地基上时,在混凝土垫层上表面应设滑动层(可采用一毡二油构造),以减少地基对混凝土变形的约束。(4)基础配筋除应满足基础承载力及构造要求外,还要增配承受因水泥水化热引起的温度应力及控制裂缝开展的构造钢筋。 混凝土配制主要措施有:(1)选定混凝土配合比时,应在保证基础强度、耐久性和施工工艺要求的前提下尽量减少水泥用量,以降低混凝土的绝对温升值。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条