说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 物理模拟技术
1)  physical modeling technology
物理模拟技术
2)  the technology of seismic physical simulation
地震物理模拟技术
3)  Crop simulation technology
作物模拟技术
1.
Crop simulation technology and its application in wheat cultivation, the principles of wheat cultivational simulation, optimization and decision making system(WCSODS), and functions and mechanism for decision making in normal year and current year were studied.
阐述了作物模拟技术的内容及其在小麦栽培中的应用 ,论述了小麦栽培模拟优化决策系统的原理 ,分析了小麦栽培模拟优化决策系统中常年决策、当年决策的功能与机理。
4)  Simulation Theory And Technology
模拟理论与技术
5)  simulation technology
模拟技术
1.
Analysis on energy-saving design of southern villa building base on simulation technology;
基于模拟技术的南方别墅建筑节能设计分析
2.
On the basis of introduction to the simulation technology for SBR process, case study was presented to demonstrate the application of simulation technology for SBR process design.
在介绍了SBR工艺模拟技术的基础上,通过实例说明应用模拟技术进行SBR工艺设计的方法并给出了模拟结果。
6)  simulation technique
模拟技术
1.
Three-dimensional water quality simulation technique of Miyun reservoir;
密云水库三维水质模拟技术
2.
Study on selecting method of construction scheme based on simulation technique;
基于模拟技术的水利工程施工方案优选方法研究
3.
The method of designing new furnaces based only on experience can hardly satisfy such purpose,but the simulation technique may help to reach this goal.
设计一个运行性能优良、可控性好的熔窑是玻璃熔窑设计师追求的重要目标 ,单凭经验进行设计难以达到这一目标 ,而借助于模拟技术则有可能实现 。
补充资料:核爆炸物理模拟


核爆炸物理模拟
physical simulation for nuclear xplosion

  hebaozha wuli moni核爆炸物理模拟(physiea一、imulati。。fornuclear explosion)在实验室内创造与核爆炸局部类似的条件,对核武器物理问题进行的分解研究。其目的在于观察、掌握核武器爆炸主要物理过程的现象与规律,检验用于核武器设计的计算机程序,维护和保持核武器的安全性、可靠性和有效性。 核武器爆炸物理过程的模拟包括爆轰和动高压物理、炸药驱动内爆动力学、高温高密度等离子体状态下的流体动力学及热核反应动力学等。主要模拟手段有流体动力学爆轰实验、脉冲功率技术和激光驱动惯性约束聚变等。 流体动力学爆轰实验是模拟核装置初级内爆动力学过程的最有效手段。在炸药爆轰作用下,物体速度可达数千米每秒,压力接近拍帕〔斯卡}(10巧Pa),爆轰实验可提供相当于核反应开始前物质在运动过程中的形状和状态。应用先进的光学和电子学诊断技术,尤其是脉冲X射线辐射照相技术,可达到以亚毫米精度测量高速运动物体瞬间的形状和界面位置,确定被压缩物体的密度分布,还可以进行计算机辅助层析照相,得到三维立体信息。爆轰实验还广泛用于核装置武器化试验、库存武器性能检测、武器安全性能研究、武器材料断裂行为和动态力学性能测量,以及物体流体动力学界面不稳定性研究等。 利用脉冲功率技术(电容器组、爆炸磁压缩装置和电子加速器等)提供的数十至数百兆安冲击大电流,产生强大的电磁力,可把几十立方厘米体积的物体高速压缩到比炸药爆轰压缩所得的温度更高(达兆开)和压力更大(达几拍帕),并维持0.1一1微秒的时间。电磁驱动实验可用来研究材料的动高压性态、核武器内爆组件缺陷的影响、等离子体内爆的界面不稳定性和极端条件下的物质性质,并能产生大量的软X射线用于核武器效应模拟研究。美、俄两国有关实验室用电磁驱动内爆技术,已能造成每立方厘米物质的内能相当于上百克炸药能量的高能量密度状态,并正在建造储能数十兆焦耳的大型设施,创造更大体积和更高温度、压力范围的实验条件。 激光聚变是开发新能源的有效途径之一,它的物理问题与热核武器的某些物理问题相似。所以,许多科学家在致力于利用实验室高功率激光产生高温高压等离子体诱发聚变,实现能量增益(即产生的能量大于消耗的能量)的同时,也在模拟研究核武器爆炸过程中的某些重要问题。 20世纪60年代,激光器间世不久,科学家就利用激光所具有的高功率密度特性,使聚变燃料达到高温,发生聚变反应。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条