1) minimum energy principle
能量最小原理
1.
The design and construction of separate tunnels,small net-spacing tunnels and double-arch tunnels should follow the principle of trying to maintain the initial state of the surrounding rock mass and the minimum energy principle.
独立隧道、小净距隧道和连拱隧道三种隧道设计与施工都要遵循"基本维持围岩原始状态"和"能量最小原理"。
2) minimal energy principle
最小能量原理
1.
By the comparison between the two models,this paper presents the advantage of the finite element method,which is based on minimal energy principle,over the general mathematical analysis.
以无引脚表面组装元器件二维焊点问题为例,用两种不同的建模方法对其建立数学模型并进行分析比较,指出用基于最小能量原理的有限元数值分析求解表面组装焊点形态问题的方法优于一般数学分析方法。
3) principle of minimum potential energy with mixed variables
混合变量最小势能原理
1.
Application of principle of minimum potential energy with mixed variables in stability of elastic thin rectangular plates with a free end;
应用混合变量最小势能原理求解有一个悬空角点弹性矩形薄板的稳定
4) principle of minimum dissipation of energy
最小能量耗散原理
5) energy minimum principle
能量最小原则
1.
Based on SVD(Singular value decomposition) and the energy minimum principle,an adaptive image denoising algorithm is proposed in this paper.
基于奇异值分解和能量最小原则,提出了一种自适应图像降噪算法,并给出了基于有界变差的能量降噪模型的代数形式。
6) minimal potential energy principle
最小势能原理
1.
Since,the total potential energy of woven fabrics,is in spline function with the yarn shape curve,the minimal potential energy principle is satisfied when the system is stable.
首先对被施加外部荷载的织物建立数学模型,由于相应的机织织物结构的总势能U是关于纱线形状曲线的泛函,当系统稳定时满足最小势能原理,通过求泛函极值,获得机织织物结构中纱线路径的较为真实的形状曲线,从而为描述机织织物结构几何模型和力学模型提供了相应的理论途径。
补充资料:能量原理与能量法
能量原理与能量法
energy principles and energy methods
nengliang yuanli yu nengliangfa能量原理与能量法(energy prineiple、and energy methods)根据能量来分析结构在外来作用下的反应的力学原理和方法。能量原理是力学中的机械能守恒定律或虚功原理在变形固体力学中的具体体现,它是能量法的理论基础,也是用能量法解题时必须满足的条件。这些条件是与平衡条件或位移协调条件等价的。能量原理和能量法与先进的计算技术相结合,显示出优越性。 应变能、余能和势能在单向应力状态下,弹性体的应变能密度(单位体积的应变能)怂可用一下式计算: ,‘一站O。凌它相当于图l中用阴影线表示的面积。另外,在单向应力状态下的余能(应力能)密度万可用下式计算: 万一俨:而它相当于图2中阴影部分的面积。由图1.21;r知 2,+万=JO‘’)。‘。~J茸祥一言一一£ d£ 图J应变能密度图2余能密度图3线弹性情尤下的应变能密度与余能密度由图3可知,线弹性体的余能密度与应变能密度在数值上相等。在简单应力状态下的应变能密度或余能密度经过总加后,可得到复杂应力状态下的应变能密度或余能密度。把它们在整个弹性体的体积内积分就得出整个弹性体的应变能或余能。对于线弹性体,应变能或余能可表示为位移或应力(内力)的二次式。弹性体的应变能与外力势能的总和称为总势能。外力势能在数值上等于各个外力在施力点位移上所做功的总和冠以负号。 能量原理在给定的外力作用下,在满足位移边界条件的所有各组位移中.实际存在的一组位移应使总势能为极值。对于稳定平衡状态,这个极值是极小值。因此,上述能量原理称为极小势能原理。它等价于平衡条件(含应力边界条件)。在满足平衡条件(含应力边界条件)的所有各组应力(内力)中,实际存在的一组应力‘内力)应使弹性体的余能为极值。对于稳定平衡状态,这个极值是极小值。因此,这个能量原理称为极小余能原理。它等价于位移协调条件。 上述两个能量原理实际上就是数学中求泛函极值的变分原理,应变能和余能分别是以位移或应力(内力夕为自变函数的泛函。所以能量原理也称变分原理,是工程力学的电要组成部分。在变分原理中,位移的变分就是虚位移,应力(内力)的变分就是虚应力(虚力)。因此,能量原理中的极小势能原理又相当于虚位移原理,极小余能原理又相当于虚应力(虚力)原理。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条