1) electric melting of glass
玻璃电熔
1.
A review is given to the power control schemes used and collected in the field of electric melting and electric boosting for glass furnaces in 40 years since 1964,hoping to offer a systematic summary of electric melting power control schemes and provide some experiences for designs of electric melting of glass in the future.
对1964年以来,40年间在玻璃电熔与电助熔所应用过与收集到的功率调节方案加以综述,希望对玻璃电熔设计的一个重要侧面——电熔功率调节方案给予一个系统的回顾,为今后玻璃电熔设计提供一些借鉴。
2.
The calculation of resistivity of soda-lime glass at high temperature is one of the most important parameters in the design for electric melting of glass.
钠钙玻璃高温电阻率计算是玻璃电熔设计中最重要的参数之一 ,作者在多年工作与收集大量资料的基础上 ,运用非线性回归与数理统计理论 ,重新探讨并提出新的钠钙玻璃高温电阻率计算式。
3.
The calculation of resistivity of soda - lime glass at high temperature is one of themost important parameters in the design for electric melting of glass.
钠钙玻璃高温电阻率计算是玻璃电熔设计中最重要的参数之一,作者在多年工作与收集大量资料的基础上,运用非线性回归与数理统计理论,重新探讨并提出新的钠钙玻璃高温电阻率计算式。
3) electric boosting for glass melting
玻璃电助熔
5) glass electric melting furnace
玻璃电熔炉
1.
To power supply for glass electric melting furnace, technology of inductive load voltage regulator drove by silicon controlled rectifier had been developed at 1970s.
国外玻璃电熔炉供电,七十年代已发展到用可控硅带电感性负载调压(即在干式变压器原边调压),它不但节能降耗,而且能进行软启动,恒流、恒压控制,能很好地保护电极防止过电流对电极的冲击,性价比较高,但若引进价格昂贵。
2.
With the quick development of glass electric melting technology, glass electric melting furnace have higher requirement to tin oxide electrode from the early density to subsequent electric performance.
随着玻璃电熔技术的快速发展,玻璃电熔炉对二氧化锡电极的电极要求越来越高,从早期的致密度到后来的电学性能,近期,随着陶瓷增韧方面的发展,对其力学性能特别是强韧性提出了新的要求。
6) glass electric melting technology
玻璃电熔技术
1.
When Voelker, a German, got the patent of the glass electric melting technology in 1902.
自从1902年德国弗尔克(Voelker)利用离子高温导电取得玻璃电熔技术专利后,世界就揭开了玻璃电熔的第一页。
2.
The article introduced the survey of glass electric melting technology of China, and presented the application on the three fields, Soda-lime glass, borosilicate glass, lead crystal glass, moreover, the paper discussed the updated development,such as in glass-ceramic, titanic- baric glass, minitype electric melting furnace etc.
本文主要介绍了我国玻璃电熔技术的概况,并分析了电熔技术的主要三个领域,并就微晶玻璃、钛钡玻璃、超小型玻璃电熔炉等玻璃电熔技术的最新技术发展进行了介绍、交流和探讨。
3.
By introducing the structure and parameter of 16 ton per day glass all-electric melting furnace, discuss in detail the progress of glass electric melting technology from batch charger、electrode、structure of chamber etc.
从16吨玻璃全电熔窑出发,简单介绍了其结构性能及基本参数,并从加料机、电极、熔炉结构等多方面阐述了玻璃电熔技术的改进与发展。
补充资料:玻璃熔窑
玻璃制造中用于熔制玻璃配合料的热工设备。将按玻璃成分配好的粉料和掺加的熟料(碎玻璃)在窑内高温熔化、澄清并形成符合成型要求的玻璃液。
玻璃制造有5000年历史。以木柴为燃料、在泥罐中熔融玻璃配合料的制造方法延续了很长时间。1867年德国西门子兄弟建造了连续式燃煤池窑。1945年后,玻璃熔窑迅速发展。
热工过程 玻璃熔窑内除有燃烧反应和产生高温外,还有热量传递、动量传递和质量传递。①热量传递:包括在火焰空间内和玻璃液中由温度差引起的火焰空间热交换、玻璃液内热交换、蓄热室内热交换和窑墙与外界环境的热交换。②动量传递:由压强差引起的不可压缩气体流动、可压缩气体流动、气体射流和玻璃液流动。③质量传递:燃烧过程中由气相浓度差引起的气相扩散和玻璃液浓度差引起的液相扩散。
类型 玻璃熔窑有坩埚窑和池窑两大类。它们均包括玻璃熔制、热源供给、余热回收和排烟供气4个部分。
坩埚窑 窑膛内放置单只或多只坩埚。坩埚窑(图1)中玻璃熔制的各阶段(熔化、澄清、均化、冷却)在同一坩埚中随时间推移依次进行,窑内温度制度随时间推移变动。成型时,用人工从坩埚口取料,再进行吹制、压制、拉引、浇注等,也可以坩埚底供料,或将整坩埚移出取料。坩埚材质以粘土居多,也有用铂的。形状有开口和横口(闭口)两种。开口坩埚的坩埚口朝向窑膛,能直接得到窑墙及热源辐射和传递的热能;横口坩埚的坩埚口朝向窑外,要通过坩埚壁间接取得热量,能避免窑内气氛对玻璃液的影响和污染。坩埚窑适用于熔制产量小、品种多或经常更换料种的玻璃。
池窑 窑膛包含一耐火材料砌筑的熔池,配合料投入窑池内熔化。池窑有间歇式和连续式两种。间歇式池窑又称日池窑,一般较小,熔池面积仅几平方米。熔制过程完成后,从取料口取料,大多采用手工或半机械成型。适用于生产特种玻璃。绝大多数池窑属于连续式(图2),各个熔制阶段在窑的不同部位进行。各部位的温度制度是稳定的。配合料由投料口投入,在熔化部经历熔化和玻璃液澄清、均化的行进过程,转入冷却部进一步均化和冷却,继而进入成型部最后均化(包括玻璃液温度均化)和稳定供料温度。由于池窑靠近底部玻璃液温度低而呈滞流状态,因此窑池玻璃液总容量大于作业玻璃量,连续作业的加料量与成型量保持平衡。熔化好的玻璃液采用连续机械化成型。池窑的规模以熔化部面积(m2)表示。生产瓶罐玻璃的大型池窑熔化部面积达150m2以上,生产能力通常可达到300~400t/24h,熔化率可达2.5~3t/24h·m2。连续式池窑容量大,相对散失热少,热效率明显高于坩埚窑,适于大批量高效率的连续性生产。
结构 玻璃熔窑由于采用的热源不同,结构形式有较大差别。如火焰熔窑、电熔窑和火焰-电熔窑具有不同的结构。
火焰熔窑 以煤、重油、煤气或天然气为燃料的熔窑。燃煤的坩埚窑设火箱,煤燃烧后产生半煤气,在喷火筒内与二次空气混合燃烧,火焰在窑膛空间传递热量。燃油的坩埚窑设油喷嘴,喷出油雾在喷火筒内燃烧。燃煤气的池窑设有小炉,它由空气通道、煤气通道、舌头、预热室和喷出口组成。燃油的池窑设小炉,由油喷嘴、空气通道和喷出口组成。池窑内火焰流动方向与窑轴垂直的称横火焰窑,与窑轴相一致的称纵火焰窑,与窑轴相一致并呈马蹄型回转的称马蹄焰窑。为使玻璃液在冷却部得到冷却,在熔化部与冷却部间设有花格墙、矮碹或吊墙等分隔装置,底部设流液洞、浮挡砖、卡脖,以调节液流和挡住未熔砂粒浮渣,用冷却水管冷却玻璃液。冷却部往往连通一至多个成型部进行玻璃液分配,因产品品种、成型方法不同,又分为瓶罐玻璃窑、平板玻璃窑、拉管窑、光学玻璃窑、球窑等多种形式。
火焰熔窑内火焰离开窑膛带有大量余热,可用于加热助燃空气和煤气,以提高火焰温度和节约燃料。回收余热主要采用蓄热室或换热器。图2即是用蓄热室回收余热的连续式池窑。蓄热室利用格子砖蓄积从窑膛内排出的烟气的部分热量。隔一定时间后加热作业换向,格子砖再把蓄积的热量传给进入蓄热室的助燃空气和煤气。为此,蓄热室必须成对设置,使间接的加热作业连续化。换热器用陶质构件或金属管道作传热体,将烟气热量通过通道壁连续传给助燃空气。坩埚窑多采用换热式,结构简单且作业稳定。池窑(尤其是大型池窑)多采用蓄热式,余热回收效率高且可靠,但须有换向设备。
电熔窑 以电能为热源的熔窑。坩埚窑有电阻加热和感应加热两种加热方式。熔制光学玻璃的坩埚窑一般在窑膛侧壁安装碳化硅或二硅化钼电阻发热体,进行间接电阻辐射加热。有的熔制特殊玻璃的坩埚窑采用感应加热方式,靠在窑中及玻璃液中感应产生涡电流进行加热。池窑直接用窑内的玻璃液作发热电阻,可在玻璃液不同深度处布置多组和多层电极,使玻璃液发热,并通过调节耗电功率控制温度制度。采用这种方式时,玻璃液面以上的空间温度很低(称冷炉顶),因而能量基本消耗于熔制玻璃和窑壁散热,没有烟气带走热量的损失和排放烟气时对环境的污染,热利用率高,并且无需设置燃烧系统和余热回收系统。电池窑可自动控制,管理人员少,劳动条件好,但电力资源消耗大。适用于熔制难熔玻璃、易挥发玻璃和深色玻璃。大型电池窑生产瓶罐玻璃能力达到每天150t。
火焰-电熔窑 以火焰热源为主,玻璃液电阻发热为辅的混合型池窑。作业运行与火焰池窑相似。为了提高熔化率以增加生产能力和改善玻璃液熔化、澄清和均化的质量,在火焰池窑的热点和加料口等部位埋入电极进行辅助加热,获得了良好效果。
玻璃制造有5000年历史。以木柴为燃料、在泥罐中熔融玻璃配合料的制造方法延续了很长时间。1867年德国西门子兄弟建造了连续式燃煤池窑。1945年后,玻璃熔窑迅速发展。
热工过程 玻璃熔窑内除有燃烧反应和产生高温外,还有热量传递、动量传递和质量传递。①热量传递:包括在火焰空间内和玻璃液中由温度差引起的火焰空间热交换、玻璃液内热交换、蓄热室内热交换和窑墙与外界环境的热交换。②动量传递:由压强差引起的不可压缩气体流动、可压缩气体流动、气体射流和玻璃液流动。③质量传递:燃烧过程中由气相浓度差引起的气相扩散和玻璃液浓度差引起的液相扩散。
类型 玻璃熔窑有坩埚窑和池窑两大类。它们均包括玻璃熔制、热源供给、余热回收和排烟供气4个部分。
坩埚窑 窑膛内放置单只或多只坩埚。坩埚窑(图1)中玻璃熔制的各阶段(熔化、澄清、均化、冷却)在同一坩埚中随时间推移依次进行,窑内温度制度随时间推移变动。成型时,用人工从坩埚口取料,再进行吹制、压制、拉引、浇注等,也可以坩埚底供料,或将整坩埚移出取料。坩埚材质以粘土居多,也有用铂的。形状有开口和横口(闭口)两种。开口坩埚的坩埚口朝向窑膛,能直接得到窑墙及热源辐射和传递的热能;横口坩埚的坩埚口朝向窑外,要通过坩埚壁间接取得热量,能避免窑内气氛对玻璃液的影响和污染。坩埚窑适用于熔制产量小、品种多或经常更换料种的玻璃。
池窑 窑膛包含一耐火材料砌筑的熔池,配合料投入窑池内熔化。池窑有间歇式和连续式两种。间歇式池窑又称日池窑,一般较小,熔池面积仅几平方米。熔制过程完成后,从取料口取料,大多采用手工或半机械成型。适用于生产特种玻璃。绝大多数池窑属于连续式(图2),各个熔制阶段在窑的不同部位进行。各部位的温度制度是稳定的。配合料由投料口投入,在熔化部经历熔化和玻璃液澄清、均化的行进过程,转入冷却部进一步均化和冷却,继而进入成型部最后均化(包括玻璃液温度均化)和稳定供料温度。由于池窑靠近底部玻璃液温度低而呈滞流状态,因此窑池玻璃液总容量大于作业玻璃量,连续作业的加料量与成型量保持平衡。熔化好的玻璃液采用连续机械化成型。池窑的规模以熔化部面积(m2)表示。生产瓶罐玻璃的大型池窑熔化部面积达150m2以上,生产能力通常可达到300~400t/24h,熔化率可达2.5~3t/24h·m2。连续式池窑容量大,相对散失热少,热效率明显高于坩埚窑,适于大批量高效率的连续性生产。
结构 玻璃熔窑由于采用的热源不同,结构形式有较大差别。如火焰熔窑、电熔窑和火焰-电熔窑具有不同的结构。
火焰熔窑 以煤、重油、煤气或天然气为燃料的熔窑。燃煤的坩埚窑设火箱,煤燃烧后产生半煤气,在喷火筒内与二次空气混合燃烧,火焰在窑膛空间传递热量。燃油的坩埚窑设油喷嘴,喷出油雾在喷火筒内燃烧。燃煤气的池窑设有小炉,它由空气通道、煤气通道、舌头、预热室和喷出口组成。燃油的池窑设小炉,由油喷嘴、空气通道和喷出口组成。池窑内火焰流动方向与窑轴垂直的称横火焰窑,与窑轴相一致的称纵火焰窑,与窑轴相一致并呈马蹄型回转的称马蹄焰窑。为使玻璃液在冷却部得到冷却,在熔化部与冷却部间设有花格墙、矮碹或吊墙等分隔装置,底部设流液洞、浮挡砖、卡脖,以调节液流和挡住未熔砂粒浮渣,用冷却水管冷却玻璃液。冷却部往往连通一至多个成型部进行玻璃液分配,因产品品种、成型方法不同,又分为瓶罐玻璃窑、平板玻璃窑、拉管窑、光学玻璃窑、球窑等多种形式。
火焰熔窑内火焰离开窑膛带有大量余热,可用于加热助燃空气和煤气,以提高火焰温度和节约燃料。回收余热主要采用蓄热室或换热器。图2即是用蓄热室回收余热的连续式池窑。蓄热室利用格子砖蓄积从窑膛内排出的烟气的部分热量。隔一定时间后加热作业换向,格子砖再把蓄积的热量传给进入蓄热室的助燃空气和煤气。为此,蓄热室必须成对设置,使间接的加热作业连续化。换热器用陶质构件或金属管道作传热体,将烟气热量通过通道壁连续传给助燃空气。坩埚窑多采用换热式,结构简单且作业稳定。池窑(尤其是大型池窑)多采用蓄热式,余热回收效率高且可靠,但须有换向设备。
电熔窑 以电能为热源的熔窑。坩埚窑有电阻加热和感应加热两种加热方式。熔制光学玻璃的坩埚窑一般在窑膛侧壁安装碳化硅或二硅化钼电阻发热体,进行间接电阻辐射加热。有的熔制特殊玻璃的坩埚窑采用感应加热方式,靠在窑中及玻璃液中感应产生涡电流进行加热。池窑直接用窑内的玻璃液作发热电阻,可在玻璃液不同深度处布置多组和多层电极,使玻璃液发热,并通过调节耗电功率控制温度制度。采用这种方式时,玻璃液面以上的空间温度很低(称冷炉顶),因而能量基本消耗于熔制玻璃和窑壁散热,没有烟气带走热量的损失和排放烟气时对环境的污染,热利用率高,并且无需设置燃烧系统和余热回收系统。电池窑可自动控制,管理人员少,劳动条件好,但电力资源消耗大。适用于熔制难熔玻璃、易挥发玻璃和深色玻璃。大型电池窑生产瓶罐玻璃能力达到每天150t。
火焰-电熔窑 以火焰热源为主,玻璃液电阻发热为辅的混合型池窑。作业运行与火焰池窑相似。为了提高熔化率以增加生产能力和改善玻璃液熔化、澄清和均化的质量,在火焰池窑的热点和加料口等部位埋入电极进行辅助加热,获得了良好效果。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条