1) quantitative design
定量设计
1.
For the above reasons,the quantitative design method for the bolting system is proposed and proved by the field in.
据此提出了松软围岩锚杆支护系统定量设计的方法 ,并得到现场工业性试验的验
2.
It made a combination of quantitative fatigue life theory with test to enhance fatigue life design from qualitative design to quantitative design, thus raised the designing level and made great economic value to automobile manufacturer.
汽车关键件疲劳寿命定量设计是一种现代设计方法,它把定量疲劳寿命理论和试验相结合,使疲劳寿命由定性设计提高到定量设计,提高了设计水平,对于汽车制造商来说极具经济价值。
2) quantitative design
定量化设计
1.
Based on the engineering experiences, it is necessary to summarize quantitative design process of main protection configuration scheme and supply high-grade assurance for the safe operation of large-sized hydro-generators, which is beneficial to spread the quantitative design method in the engineering field.
为保证大型发电机组的安全运行,在工程实践经验积累的基础上,有必要对发电机主保护配置方案的定量化设计过程进行归纳总结,以使其更好地服务于工程实践。
2.
According to above design work,the occurrence probability of internal faults should be considered in the quantitative design of main protection schemes for large and medium generators,while possible slot and end faults occurring.
以漫湾二期和景洪发电机主保护设计为例,分析了7种主保护配置方案,主要比较了其中性能较好的2种方案在发电机内部故障时的动作情况及不能动作故障类型,说明在大中型水轮发电机主保护的定量化设计中,除了引入故障的存在几率——发电机实际可能发生的同槽和端部交叉故障,还应考虑内部短路的发生几率。
3.
With the main protection designs of eight hydro-generators as examples,the traditional main protection configuration scheme is compared with the quantitative design scheme,which explains that main protection configuration scheme can not be applied indiscriminately to different type hydro-generators with similar branch number or capacity.
以8台水轮发电机的主保护设计为例,对比了传统设计方案和定量化设计方案的性能,说明不能以每相分支数相同或容量相等/相近为理由而相互套用或照搬主保护配置方案。
3) rationing equipment
定量配料设备;计量设备
4) Measuring and calibrating equipment
计量检定设备
5) quantitative and optimum design method
定量化优化设计
1.
The multi-loop method has been firstly presented by Chinese researchers,which established the theoretic basis of quantitative and optimum design method of main protection configuration scheme for the electric main equipment.
近30年来,电气主设备继电保护技术取得了显著进步,中国首先提出"多回路分析法",为主设备主保护方案的选择采用"定量化优化设计方法"奠定了理论基础。
补充资料:一种定量称重仪的设计
随着电子技术和微计算机的快速发展,智能型称重仪器正逐步取代传统的机械称量系统,在计量、定量称重等系统的应用越来越广泛。本文介绍的智能型数字显示称重仪,采用嵌入式单片计算机,其显著特点是集高精度计量、在线通讯、在线修改参数、报警及实时显示等于一身,称重仪的大部分功能集成于一块电路板上,仪器可靠性高、体积小,便于用户安装使用。系统采取了特殊的自诊断、保护和抗干扰措施,具有较高的实用价值。
称重仪硬件设计原理
该称重仪可同时接入二路拉压传感器输入信号,并可为拉压传感器提供桥路电压,A/D采用∑~ △型高精度模数转换器,单片机采用内置8KFlashRAM的AT89C52,由于不需外扩程序储存器,可有效减小线路板面积,提高工作稳定性。采用E2PROM 型的X5045作为数据存储器,存储工作过程中所需的某些参数。键盘用于参数的设置,本设计采用4个薄膜按键,通过键值组合及显示提示,可完成多组参数的键入及多组信息的显示,如波特率设置、称量的皮重显示等。显示为双6位LED,其中第l位为毛、净重或动态补偿状态指示,后5位为称重值。通讯接口采用RS一485方式,其有效运传距离为1200米,便于现场组成测控系统。在仪表的后置面板上,安装了20个接线端子,分别用于拉压传感器工作电源的输出、仪表交流电源的输入及称重上、下限报警的输出。为方便用户的使用,所有报警输出均采用继电器触点形式。图】中的D/A转换用于有计量控制系统时的控制系统的给定。
称重仪主要技术参数及功能
l、量程:单位Kg或g,最大为99999Kg(或g),量程自动转换,测量精度为±0.1%。
2、回差:量程的干分比,最大为999。
3、报警上、下限:量程的干分比,最多三位,共4路。
4、皮重:默认值为零,具体数值可由键盘或上位机输入。
5、动态补偿方式:由键盘设置或由上位机指令补偿。
6、显示错误信息:如补偿信息丢失、校秤信息丢失、皮重信息丢失、量程信息丢失、零点及满标度信息丢失等。为适于定量包装生产过程的称重,该仪器内置了一个简单实用的消除称重误差的控制算法。由于称重系统主要由传感器误差、称重仪表误差及干扰误差组成,前两种误差是由系统硬件决定的,为系统所固有,而干扰误差主要来自于称量体的振动、喂料机构的惯性、料仓的压力变化、物料流动状态的变化以及物料对称量体的冲击、落差等。这些可称为称重过程中的干扰因素,是随机的。该仪器采用预估补偿值和修正控制值来跟踪这些随机干扰的变化,以此达到消除或尽可能减少干扰所引起的称重误差的目的。其具体过程如下:
先求出误差预估补偿值:
N的取值既不能太大,也不能太小。若太大,会降低称重仪器对随机干扰的跟踪灵敏度,严重时甚至形成数据饱和现象,起不到及时跟踪的目的:若太小,则受单次称重干扰的影响较大,容易造成后续称量中的虚假补偿。因此,N的取值大小要由具体情况及试验确定。
在求出称量误差的平均值后,采用下面的修正公式来更改控制值:
式中,u(K+1)为第K+1次的控制值,d为e跟踪范围的上很。
上式中的修正算法表明,当]el>d时,控制系统的给定值需要新设定,以消除干扰的影响,使控制系统尽快趋于稳定,对精度要求不是很高的控制系统,d值可取设定值的5%。该预估补偿算法无需建立系统的新的数学模型,算法简单且易于计算,能有效提高称重系统的控制性能。
与上位机的通信协议
该仪器在接入测控系统时,其通信网络拓扑形式为上位机一点对下位机多点形式,因此作为下位机的该称重仪表必须有自己的站号,该站号可由用户予以设置。此外,用户还可以设置通信时的波特率。
称重仪硬件设计原理
该称重仪可同时接入二路拉压传感器输入信号,并可为拉压传感器提供桥路电压,A/D采用∑~ △型高精度模数转换器,单片机采用内置8KFlashRAM的AT89C52,由于不需外扩程序储存器,可有效减小线路板面积,提高工作稳定性。采用E2PROM 型的X5045作为数据存储器,存储工作过程中所需的某些参数。键盘用于参数的设置,本设计采用4个薄膜按键,通过键值组合及显示提示,可完成多组参数的键入及多组信息的显示,如波特率设置、称量的皮重显示等。显示为双6位LED,其中第l位为毛、净重或动态补偿状态指示,后5位为称重值。通讯接口采用RS一485方式,其有效运传距离为1200米,便于现场组成测控系统。在仪表的后置面板上,安装了20个接线端子,分别用于拉压传感器工作电源的输出、仪表交流电源的输入及称重上、下限报警的输出。为方便用户的使用,所有报警输出均采用继电器触点形式。图】中的D/A转换用于有计量控制系统时的控制系统的给定。
称重仪主要技术参数及功能
l、量程:单位Kg或g,最大为99999Kg(或g),量程自动转换,测量精度为±0.1%。
2、回差:量程的干分比,最大为999。
3、报警上、下限:量程的干分比,最多三位,共4路。
4、皮重:默认值为零,具体数值可由键盘或上位机输入。
5、动态补偿方式:由键盘设置或由上位机指令补偿。
6、显示错误信息:如补偿信息丢失、校秤信息丢失、皮重信息丢失、量程信息丢失、零点及满标度信息丢失等。为适于定量包装生产过程的称重,该仪器内置了一个简单实用的消除称重误差的控制算法。由于称重系统主要由传感器误差、称重仪表误差及干扰误差组成,前两种误差是由系统硬件决定的,为系统所固有,而干扰误差主要来自于称量体的振动、喂料机构的惯性、料仓的压力变化、物料流动状态的变化以及物料对称量体的冲击、落差等。这些可称为称重过程中的干扰因素,是随机的。该仪器采用预估补偿值和修正控制值来跟踪这些随机干扰的变化,以此达到消除或尽可能减少干扰所引起的称重误差的目的。其具体过程如下:
先求出误差预估补偿值:
N的取值既不能太大,也不能太小。若太大,会降低称重仪器对随机干扰的跟踪灵敏度,严重时甚至形成数据饱和现象,起不到及时跟踪的目的:若太小,则受单次称重干扰的影响较大,容易造成后续称量中的虚假补偿。因此,N的取值大小要由具体情况及试验确定。
在求出称量误差的平均值后,采用下面的修正公式来更改控制值:
式中,u(K+1)为第K+1次的控制值,d为e跟踪范围的上很。
上式中的修正算法表明,当]el>d时,控制系统的给定值需要新设定,以消除干扰的影响,使控制系统尽快趋于稳定,对精度要求不是很高的控制系统,d值可取设定值的5%。该预估补偿算法无需建立系统的新的数学模型,算法简单且易于计算,能有效提高称重系统的控制性能。
与上位机的通信协议
该仪器在接入测控系统时,其通信网络拓扑形式为上位机一点对下位机多点形式,因此作为下位机的该称重仪表必须有自己的站号,该站号可由用户予以设置。此外,用户还可以设置通信时的波特率。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条