说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 同伦-牛顿联合方法
1)  homotopy-Newton hybrid method
同伦-牛顿联合方法
1.
The homotopy-Newton hybrid method was proposed for predicting azeotropes effectively,in which the homotopy algorithm with the global convergence was used to generate the better initial values,and the Newton algorithm with the higher convergent speed was used to solve the azeotropy equations.
应用联合方法预测了多个二元和三元非理想性物系的共沸点,结果表明,同伦-牛顿联合方法有较大的收敛范围,较高的迭代过程稳定性,较快的收敛速度。
2)  Homotopy Continuation-Newton Method
同伦延拓-牛顿法
3)  the combination of Newton iteration and gradient method
梯度-牛顿联合法
1.
Applying the combination of Newton iteration and gradient method, this paper analyzes theoretically the elastohydrodynamic lubrication of line contacts, and then researches practically that of involute spur gear.
本文采用梯度-牛顿联合法对线接触弹流润滑问题进行了理论分析,并对渐开线直齿轮传动的润滑问题进行了实际探讨。
4)  Newton homotopy continuation method
牛顿同伦连续算法
5)  Newton method
牛顿方法
1.
Disturbed Newton methods for nonlinear equations;
非线性方程组的扰动牛顿方法
2.
The inexact Newton method for inverse Toeplitz eigenvalue problems;
求解Toeplitz矩阵特征值反问题的不精确牛顿方法
3.
This method was less computation than that of the Newton method and was faster than the fixed Newton method in convergence.
该迭代法设计了最佳松弛参量并不断调整线性系统的右端矢量,它比牛顿方法的计算量要少,比修正的牛顿方法收敛得快。
6)  Newton's method
牛顿方法
补充资料:球面的同伦群


球面的同伦群
spheres, homotopy groups of die

  配边.然而,这个序列的第一项的明确的计算还有内在的困难,该困难还未被克服. 111.计算的结果.具有i一陀(2的群二。(S”)同构于上表中的群: 2)具有12簇k(22的群武同构于下表中的群:上料耘栩粼赫粉 关于群兀,(夕)的计算的更进一步的结果,见〔3]在这些群中的奇准素分量的计算中已取得了特别的进展. 例如: 3)如果p是一个奇素数,则群心的p准素分量当k=21汁一l)一1,I=l,…,(夕一l)时是Z,,而对其他的ko除二。,_,(SZm)形如20(有限的)之外是有限的,这个结果称作Sen℃有限定理(Sen七6面记以溺山印代m).从属于合成积的附加结果是西田幂零定理(Nis灿血血potel】Ce小印n万n),那是对每个“‘暇,k>0是幂零的.更进一步,有〔b坛m一M00re一N已治即面成r指数定理(〔b坛泊一Moore-N己讹以foifer exponeni也co众派n),它叙述了对p)5,Abel群:2.*、+z(S,‘+‘)的夕分量有指数夕‘· 对球面的同伦群的一个很完全的讨论,特别对Adan舀一E幻B~谱序列和它的EZ项,见〔A2】.球面的同伦群【姻~,加腼喊柳,明.声of加;c中eProMo功朋,ec翔e印ynu。] 经典同伦理论中研究的一个对象.球面同伦群二,(夕)的计算在那个年代(特别是20世纪印年代)被当作拓扑学中的中心问题之一.拓扑学家希望这些群能成功地完全算出来,并且将有助于解决同伦中的其他分类间题.这些希望没有完全实现.球面的同伦群只被部分地计算出,并且随着广义上同调论(罗nerai达刃coho即10留t坛幻r油)的发展,它们的计算问题变成不再紧迫.然而,当发现了它在微分拓扑学(球面上的微分结构和多维纽结的分类)中的意想不到的用处时,已经汇集的关于这些群的所有信息都不是多余的. 1.一般理论.1)如果i<”或葱>n=1,则兀‘(S”)=0. 2)二。(5.)=Z(Brou认尼r一Hopf定理(Brou叭甩r-Ho讨山印肥m));这个同构将群兀。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条