1) reversible requirement
可逆要求
1.
Inter compensation between dimension tolerance and shape-position tolerance in three conditions, namely,requirement of maximum solid,application of reversible requirement to requirement of maximum solid and application of requirement for maximum solid to base element,is investigated in this paper.
该文论述了最大实体要求,可逆要求用于最大实体要求,最大实体要求用于基准要素三种情况下尺寸公差与形位公差相互补偿及计算问题。
2.
The application of reversible requirement in practicle works was analyzed.
分析了可逆要求在实际工作中的应用。
3.
It is essential that the application for the least material requirement and reversible requirement of related requirement is discussed in the precision design.
相关原则应用极少 ,但相关原则的意义重大 ,不容忽视 ,很有必要对相关要求中的最小实体要求和可逆要求在精度设计中的应用进行论述。
2) reversible derivation
可逆求导
3) inverse voltage regulation
逆调压要求
1.
Then considering the requirement for inverse voltage regulation of the substation\'s control bus and the voltage characteristics of the dummy power sources,a new model for multiple-objective dynamic reactive power optimization in regional power grid is proposed.
文中考虑虚拟电源的电压特性以及变电站控制母线的逆调压要求,建立区域电网的多目标动态无功优化新模型,并采用灵敏度方法将虚拟电源电压表示为供电无功的线性函数。
4) claimable
[英]['kleiməbl] [美]['kleməbḷ]
可要求的
5) Geometrical tolerancing--Maximum material requirement,least material requirement and reciprocity requirement
GB/T 16671-1996 形状和位置公差 最大实体要求、最小实体要求和可逆要求
补充资料:可逆与不可逆
一切客观过程、特别是基本物理化学过程变化的顺序性。前者是指过程的可反演性,后者是指过程的不可反演性。
严格的物理学意义上的可逆性是指时间反演,即过程按相反的顺序进行。在经典力学的运动方程中,把时间参量 t换成-t,就意味着过程按相反的顺序历经原来的一切状态,最后回到初始状态。但实际上,机械运动过程总是受到各种复杂的随机因素的作用,因此完全的可逆性是不存在的。
严格的物理学意义上的不可逆性概念最初是由经典热力学提出的。它把热的过程区分为可逆的和不可逆的两种,并指出在一个封闭系统的热过程中,热量总是自发地从较热物体传输给较冷物体。热力学第二定律用熵的增加来描述这种不可逆过程。这个定律的统计解释表明,不可逆过程就是封闭的分子系统从有序状态趋向于无序状态。
20世纪40年代以来,系统论、控制论等学科的发展表明,任何开放系统即任何现实存在的系统不仅可以增熵,也可以从外界输入负熵而导致减熵。因此,决不能把时间的方向性唯一地同熵增对应起来,因为事实上也存在着熵减的不可逆过程。非平衡态热力学等新兴学科的发展又进一步表明,任何开放系统,包括我们所观察到的宇宙系统,都可以在远离平衡态的条件下形成某种有序的耗散结构(见耗散结构理论),从而阻止或延缓熵增过程。而且,一个非平衡态的开放系统在一定条件下既可能从无序到有序,也可能从有序到混乱。所以,不可逆过程是复杂的,既可以是熵增过程,也可以是熵减过程,即既可以是退化,也可以是进化。
自然界发展中的进化和退化是不可逆过程的两种形式。虽然自然界中的不可逆过程是绝对的,但有些过程在一定的条件下却表现出相对的可逆性,因此,人类可以创造条件,利用这种近似的可逆性。
严格的物理学意义上的可逆性是指时间反演,即过程按相反的顺序进行。在经典力学的运动方程中,把时间参量 t换成-t,就意味着过程按相反的顺序历经原来的一切状态,最后回到初始状态。但实际上,机械运动过程总是受到各种复杂的随机因素的作用,因此完全的可逆性是不存在的。
严格的物理学意义上的不可逆性概念最初是由经典热力学提出的。它把热的过程区分为可逆的和不可逆的两种,并指出在一个封闭系统的热过程中,热量总是自发地从较热物体传输给较冷物体。热力学第二定律用熵的增加来描述这种不可逆过程。这个定律的统计解释表明,不可逆过程就是封闭的分子系统从有序状态趋向于无序状态。
20世纪40年代以来,系统论、控制论等学科的发展表明,任何开放系统即任何现实存在的系统不仅可以增熵,也可以从外界输入负熵而导致减熵。因此,决不能把时间的方向性唯一地同熵增对应起来,因为事实上也存在着熵减的不可逆过程。非平衡态热力学等新兴学科的发展又进一步表明,任何开放系统,包括我们所观察到的宇宙系统,都可以在远离平衡态的条件下形成某种有序的耗散结构(见耗散结构理论),从而阻止或延缓熵增过程。而且,一个非平衡态的开放系统在一定条件下既可能从无序到有序,也可能从有序到混乱。所以,不可逆过程是复杂的,既可以是熵增过程,也可以是熵减过程,即既可以是退化,也可以是进化。
自然界发展中的进化和退化是不可逆过程的两种形式。虽然自然界中的不可逆过程是绝对的,但有些过程在一定的条件下却表现出相对的可逆性,因此,人类可以创造条件,利用这种近似的可逆性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条