1) solvothermal method
溶剂热法
1.
Preparation of Cu and Cu_2O nanocrystallites by solvothermal method;
溶剂热法制备铜与氧化亚铜纳米晶
2.
Nanotubes of H2Ti2O5·H2O and Na2Ti2O4(OH)2 have been synthesized by a solvothermal method using tetrabutyl orthotitanate as titanium source with the pH being adjusted by addition of sodium hydroxide or hydrochloric acid solution,without any post-treatment with hydrochloric acid or water being required.
利用溶剂热法以钛酸丁脂作为钛源,采用盐酸、氢氧化钠溶液调节体系的pH,在未进行水洗或者酸洗等后处理情况下制备出钛酸(H2Ti2O5。
3.
Thiostannate,[Ni(tepa)]2(μ2-Sn2S6)(1,tepa=tetraethylenepentamine),was synthesized by solvothermal method.
利用溶剂热法合成了有机杂化锡硫化合物[Ni(tepa)]2(μ2-Sn2S6)(1,tepa=四乙烯五胺),其结构和光吸收特性经IR,元素分析和UV表征,晶体结构由X-射线单晶衍射仪测定。
2) solvothermal
溶剂热法
1.
Emulsifier-free poly(methyl methacrylate-styrene)[P(MMA-St)] cationic nanoparticles with an average diameter of about 40 nm were prepared in an acetone-water medium using 2,2-azobis(2-methylpropionamidine) dihydrochloride(AIBA) as the initiator by solvothermal method.
运用溶剂热法,以丙酮-水为分散介质,偶氮二异丁基脒盐酸盐(AIBA)引发苯乙烯(St)和甲基丙烯酸甲酯(MMA)共聚,制得粒径约为40nm的无皂阳离子聚(苯乙烯-甲基丙烯酸甲酯)纳米胶乳粒子[P(MMA-St)],其结构经TEM,FT-IR,TG和DTA表征。
2.
7O3 nanoparticles have been successfully synthesized by hydrothermal and solvothermal methods, and the synthesis mechanism was discussed.
采用传统的水热法和混合溶剂热法制备了高纯的四方相KTN纳米粉体KTa0。
3.
In the first part of this paper, several nano-sulfides with special structure andmorphology had been synthesized successfully by solvothermal method using thequaternary ammonium salt of 2-undecyl-1-dithioureido-ethyl-imidazoline (SUDEI) asthe surfactant, and characterized by TEM、SEM、XRD、EDS and IR, respectively.
本论文的第一部分是以月桂酸硫脲咪唑啉季铵盐(SUDEI)为表面活性剂,溶剂热法制备了几种具有特殊形貌与结构的纳米硫化物,分别用TEM、SEM、XRD、EDS、IR对产物进行了表征,探讨了该表面活性剂对在介观尺度下的有机-无机杂化凝聚体形成的作用。
3) Solvothermal synthesis
溶剂热法
1.
This paper focuses on the novel properties of magnetics, field emission, electrochemistry, photoelectrochemistry and catalysis of well-ordered nanowire/rod/tube array materials, which are synthesized by vapor-liquid-solid method, vapor-solid method, templates and Solvothermal synthesis method.
概述了有序纳米线/棒/管阵列的性质、应用及制备方法的研究进展,着重介绍了有序纳米线/棒/管阵列材料的制备方法如气相-液相-固相生长法、气相-固相生长法、模板法和溶剂热法,以及阵列材料在磁、场发射、激光、电化学、光电化学和催化方面所具有的独特性质与应用,展望了该领域的研究前景。
2.
There are a variety of methods for the preparation of PZT, such as coprecipitation, solvothermal synthesis and sol-gel process, but the prepared PZT products are mostly in the size of micrometer-scale.
本文在前人工作的基础上,利用sol-gel法和溶剂热法的优点:可以使用的所有高纯原料均可处于溶液状态,在分子或原子水平上实现充分均匀混合,探讨了在非水溶剂中sol-gel法和溶剂热法在PZT粉体制备中的应用,并分别探讨了PZT制备的规律及特点: 1。
4) solvent-thermal method
溶剂热法
1.
With manganese dioxide as the basic reaction raw material, the magnetic nanometer Mn3O4 powder was successfully prepared by solvent-thermal method.
以MnO2为主要原料,应用溶剂热法合成了纳米磁性Mn3O4粉体。
5) solvothermal methods
溶剂热法
1.
The characteristics of solvothermal methods was introduced in this paper.
本文介绍了溶剂热法的特点,综述了溶剂热法在非氧化物纳米材料如Ⅲ-Ⅴ族半导体、金刚石、碳化物、氮化物、金属硫属化合物及一维纳米材料制备中的研究进展,并对溶剂热法合成纳米材料的发展方向进行了展望。
6) solvothermal method
溶剂热方法
1.
Both cBN and hBN nanoparticles have been synthesized by solvothermal method, the effects of GaP nanoparticles on the phases and morphology of BN nanoparticles have been investigated.
研究了溶剂热方法合成氮化硼纳米晶过程中异种晶粒对氮化硼微观形貌和物相的影响,结果表明:在不改变反应原料种类的情况下,当体系内加入GaP纳米颗粒时,制备的氮化硼纳米晶呈现"树枝"状形貌,且样品中立方氮化硼为主要物相。
补充资料:热光热透镜法
分子式:
CAS号:
性质: 又称激光热透镜光度法,简称热光热透镜法。应用激光束使试样产生热效应进行元素痕量分析的一种技术。基本原理是激光束射向置于溶剂中试样上,试样吸收光能,通过无辐射弛豫而转化为热能(或称加热),使试样溶液以激光束为中心形成很强的温度径向梯度分布,导致溶液折射指数的径向梯度分布;此时试样相当于一个透镜,即所谓热透镜效应,其大小,可测定光束中心部位光强的减小来量度。试样可进行萃取使欲测元素分离或用螯合剂生成螯合物或离子缔合物再进行激光束加热,以提高选择性。分析装置有多种形式,大多用一种激光束如氪离子(Kr+)激光器、氦-氖激光器或脉冲可调染料激光器发射的某一波长,可同时作为加热光束和探测光束;亦有用双光束如用脉冲染料激光束作为试样的加热光束,用非聚焦型氦-氖激光束作为探测光束。本法灵敏度比一般光谱高。已用于稀土、金属元素在地表水、化学处理后的排水及其他各种试样中的痕量分析。
CAS号:
性质: 又称激光热透镜光度法,简称热光热透镜法。应用激光束使试样产生热效应进行元素痕量分析的一种技术。基本原理是激光束射向置于溶剂中试样上,试样吸收光能,通过无辐射弛豫而转化为热能(或称加热),使试样溶液以激光束为中心形成很强的温度径向梯度分布,导致溶液折射指数的径向梯度分布;此时试样相当于一个透镜,即所谓热透镜效应,其大小,可测定光束中心部位光强的减小来量度。试样可进行萃取使欲测元素分离或用螯合剂生成螯合物或离子缔合物再进行激光束加热,以提高选择性。分析装置有多种形式,大多用一种激光束如氪离子(Kr+)激光器、氦-氖激光器或脉冲可调染料激光器发射的某一波长,可同时作为加热光束和探测光束;亦有用双光束如用脉冲染料激光束作为试样的加热光束,用非聚焦型氦-氖激光束作为探测光束。本法灵敏度比一般光谱高。已用于稀土、金属元素在地表水、化学处理后的排水及其他各种试样中的痕量分析。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条