说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 颗粒特征
1)  grain's character
颗粒特征
2)  characteristic of particle group
颗粒群特征
1.
Also, the relationships between fly ash dosage, the characteristic of particle group of fly ash and the rheology of cement pastes with fly ash were discussed.
采用回转型粘度计测定了粉煤灰水泥浆体的流变参数 ,并探讨了粉煤灰品种、掺量、颗粒群特征等参数与粉煤灰 水泥浆体流变性能的关系 。
3)  particle size distribution
颗粒群特征
1.
Effect of mechanical grinding on particle size distribution and strength of coal gangue-cement system;
机械粉磨对煤矸石-水泥体系颗粒群特征及力学性能的影响
2.
To study the effect of mechanical grinding on particle size distribution and strength of coal gangue-cement system different mechanical grinding schemes were adopted including: coal gangue ground independently to replace cement, coal gangue and cement mixed first then ground and coal gangue and cement ground independently then mixed ( the ratio between coal gangue and cement keeps 30 to 70).
采用了煤矸石单独粉磨后取代水泥、煤矸石与水泥混合后共同粉磨(先混后磨)、煤矸石与水泥分别单独粉磨后混合(先磨后混)(三者均按w(煤矸石):w(水泥)=30:70的比例)3种不同的机械粉磨方式研究粉磨对煤矸石-水泥体系的颗粒群特征以及力学性能的影响。
4)  characteristics of particle group
颗粒群特征
1.
The relationship between characteristics of particle group and strength, fluidity property of fly ash cement were investigated.
提供了一个能够有效测量不同颗粒形貌特征的系统,即数字图像处理系统,将运用该系统得到的粉煤灰颗粒群特征数据,如粒径分布、圆度和填充度等作了灰色关联分析,研究了粉煤灰颗粒群特征与水泥基材料宏观性能的关系,为粉煤灰的有效利用提供了理论依据。
2.
The characteristic parameters of particle group, new test method, the theory and method of model formation and the relationship between characteristics of particle group and its essential quality are introduced on the basis of analyzing the research method and theory for characteristics of particle group.
在归纳分析颗粒群特征研究方法和理蜜的基础上 ,重点介绍了近年来发展起来的有关颗粒群特征参数 ,检测新方法、建模理论与方法以及颗粒群特征与性能关系的研究成果 ,并展望了颗粒群分析领域的发展趋势。
3.
Based on the quantitative stereology theory,the quantitative characteristics of particle group such as particle size distribution,roundness are determined by using image analysis.
应用图像分析仪和定量体视学原理,对颗粒群特征参数进行了定量分析,并对图像分析的实验参数:最小样本数、图像优化及灰度阈值等进行了讨论研究。
5)  particle characteristic and property
颗粒特征和性能
6)  characteristic particle size
特征颗粒尺寸
1.
characteristic particle size,was developed in the present paper.
本文提出了一种描述粉末颗粒尺寸的新方法,即采用特征颗粒尺寸d_c的概念来表征粉末颗粒大小。
补充资料:偏微分算子的特征值与特征函数
      由边界固定的膜振动引出的拉普拉斯算子的特征值问题:是一个典型的偏微分算子的特征值问题,这里x=(x1,x2);Ω是膜所占据的平面区域。使得问题有非平凡解(非零解)的参数λ的值,称为特征值;相应的解称为特征函数。当Ω有界且边界嬠Ω满足一定的正则条件时,存在可数无穷个特征值,相应的特征函数ψn(x)组成l2(Ω)上的完备正交系。乘以常因子来规范ψn(x),使其l2(Ω)模为1,则Ω上的任意函数??(x)的特征展式可写为:当??可以"源形表达",即??满足边界条件且Δ??平方可积时,展式在Ω一致收敛。当??平方可积时,展式平方平均收敛,且有帕舍伐尔公式:
  
  
  对膜振动问题的认识还是相当有限的。能够精确地知道特征值的,只限于矩形、圆盘等少数几种非常简单的区域。对椭圆和一般三角形的特征值精确值,还几乎毫无所知。其他情形就更谈不上了。
  
  将不超过 λ的特征值的个数记为N(λ)。特征值的渐近分布由N(λ)对大 λ的渐近式来刻画。这方面最早的结果是(C.H.)H.外尔在1911年得到的(外尔公式):
  式中表示Ω的面积。R.库朗将余项改进为。对于多角形区域,又有人将余项改进到。各种情况下改进余项估计的工作至今绵延不绝。外尔猜测有一个更强的结果:式中|嬠Ω|是区域边界之长,但尚未被证出。
  
  与此密切相关的是下面的MP公式:(t→+0)
  取一个渐近项时,用陶伯型定理可由它推出N(λ)的外尔公式。第二渐近项与外尔猜想非常相象,但由此证不出外尔猜想。第三项迟至1966年才被M.卡茨导出,后来由H.P.麦基恩与I.M.辛格严格证明,其中h表示鼓膜Ω的洞数。
  
  特征值与膜振动频率有一个直接的换算关系,M.卡茨据此给MP公式一个非常生动的解释:可以"听出"鼓膜的面积|Ω|、周长|嬠Ω|和洞的个数h!由于1-h恰巧是Ω的欧拉-庞加莱示性数,是整体几何中颇受重视的一个不变量,"听出鼓形"或"谱的几何"问题立即引起人们的强烈兴趣,并导致一系列重要的研究。不过一般的特征值反问题,要求从特征值的谱完全恢复Ω,还远远没有解决。
  
  用陶伯型定理得出N(λ)渐近式的方法,由T.卡莱曼于1934年首创,他还得到谱函数的渐近式:(λ→∞),式中δxy当x=y时为1,当x≠y时为0。
  
  上述关于拉普拉斯算子的结果,由L.戈尔丁和F.E.布劳德推广到 Rn的有界区域Ω上的m 阶椭圆算子。尽管推算繁杂,但结果十分简单整齐:;;式中 v(x) 表示集合{ξ||A0(x,ξ)|<1}的勒贝格测度,而是A的最高阶导数项相应的特征形式。特征展开定理亦由L.戈尔丁得出。
  
  对于奇异情形,例如薛定谔方程 的谱问题,可以证明存在谱函数S(x,y,λ),特征展式为。由于可能出现连续谱,S(x,y,λ)一般不一定能写成前述特征函数双线和的形式。判定奇(异)微分算子谱的离散性是很有意义的工作。已经出现各种充分条件。不过关于特征值与特征函数渐近性质的研究,还只是限于少数特例。
  
  在处理‖x‖→∞ 时V(x)→∞的情形,M.卡茨与D.雷等人曾创造了一种系统的概率方法,其中借助数学期望表出格林函数,有效地求出谱函数与特征值的渐近式:
  。
  
  当算子A的系数不光滑,或非一致椭圆,或非自共轭,以及边条件带特征参数或带非定域项等等情形,都出现不少研究结果。还有人考察Au=λBu型的特征值问题,这里A、B都是椭圆算子。
  
  除上述问题外,特征展式的收敛性与求和法也一直受到人们的关注。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条