1) staggered grid
交错网格
1.
Elastic wave simulation of P-and S-waves separation by 2-D staggered grid and application;
二维交错网格纵横波分离的弹性波模拟及应用
2.
The FVM based on a staggered grid is adopted to derive the discretized forms of the continuity,momentum,constitutive and energy equations.
采用基于交错网格的有限体积法(FVM)离散了4大方程,给出了能量方程的全三维离散格式。
3.
A non-uniform staggered grid arrangement was used to avoid zigzag pressure field.
为了数值模拟提拉(又名Czochralski)法获得单晶体的生长过程,本文采用有限容积法离散控制方程,采用非均匀的交错网格避免不合理的振荡压力场,采用三阶精度QUICK(Quadratic Upwind Interpolation of Convective Kinematics)格式离散对流项,采用延时修正来实施QUICK格式获得满足主对角占优的代数方程组,采用SIMPLE(Semi-implicit Method for Pressure Linked Equations)算法耦合压力和速度场,给出了基于上述方法的方程、算法,并发展了程序,计算了Wheeler标准问题,计算结果与文献相当一致,同时本算法能模拟计算高葛拉晓夫数时的流动,显示出非均匀网格QUICK格式模拟晶体生长的优越性;另外本文将这一算法运用到单晶硅的数值模拟中,计算结果令人满意。
2) staggered-grid
交错网格
1.
A staggered-grid high-order finite difference method for modeling elastic wave equation in 3-D dual-phase anisotropic media;
三维双相各向异性介质弹性波方程交错网格高阶有限差分法模拟
2.
Modeling of multicomponent induction log responses by staggered-grid finite difference method;
多分量感应测井响应的交错网格有限差分法模拟
3.
High-order Staggered-grid Finite Difference Numerical Modeling for P-SV Wave Propagation in Heterogeneous Transversely Isotropic Media;
非均匀TI介质P-SV波传播交错网格高阶有限差分数值模拟
3) staggered grids
交错网格
1.
Because of its construction under staggered grids and Riemann solver-free,the advantage.
在交错网格的情况下,构造了一类不需解R iemann问题的求解三维双曲守恒律的二阶显式差分格式,证明了该格式在CFL(Courant-Friedrichs-Lewy)条件限制下为MmB(Maximum and m ini-mum Bounds)格式,进行了并行计算数值试验,得到的试验结果令人满意。
2.
It presents a class of the second order accurate explicit Gauss schemes with staggered grids for the computation of solutions of single hyperbolic conservation laws in two dimernsions, these schemes are Riemann solver\|free and Maximum and Minimum Bounds under the restriction of CFL,and have been extended to system of hyperbolic conservation laws.
利用Gauss型求积公式在交错网格的情况下构造了一类不需解Riemann问题的求解二维双曲守恒律的二阶显式Gauss型差分格式 ,该格式在CFL条件限制下为MmB格式 。
4) staggered mesh
交错网格
1.
Numerical analysis of the unsteady flow around the stationary circular cylinder with Re (the Reynolds number) ranging from 100 to 10\+5 and its vortex-induced vibration with Re from 5160 to 6300 are conducted by solving the incompressible Navier-Stokes equations of initial variables in general curvilinear coordinates and staggered mesh.
用基于一般曲线坐标系和交错网格的差分法求解原始变量二维不可压粘性流体的N- S方程 ,计算了雷诺数从 10 0到 1× 10 5范围内静止圆柱的非定常绕流和雷诺数从 5160到 630 0范围内的涡致振动。
2.
On a staggered mesh,in which velocity is vertex-centered,an a.
重映过程中,借助四边形辅助网格,实现了交错网格节点量的重映。
3.
According to the character of pipe network,the model is discreted in a staggered mesh,we define discharge and figure of pipe at the center of the element and define the piezometric head (when pressurised flow) or water level(when free surface flow) at the node.
其次,通过对现有的一维非恒定流数值求解方法比较,并且针对管网系统本身结构的特点,采取交错网格半隐式有限差分法对管网进行离散求解。
5) staggering grid
交错网格
1.
Elastic wave high-order staggering grid finite-difference numeric simulation based on transversely isotropic BISQ Model;
基于横向各向同性BISQ模型的弹性波高阶交错网格有限差分数值模拟
2.
Based on Biot theory, the paper presented staggering grid finite-difference algorithm with any even-order precision of 3-C elastic wave e-quation in 2-D biphase dip anisotropic medium,and conducted simulation of elastic wavefield in homogeneous and two-layered biphase VTI and TTI media.
基于Biot理论,本文提出了二维双相任意倾斜各向异性介质三分量弹性波方程交错网格任意偶阶精度有限差分解法,并对均匀及两层双相VTI介质和TTI介质中的弹性波场进行了模拟。
6) non-staggered grids
非交错网格
1.
To model the wave propagation more accurately in moderate water area,a numerical model was established under the non-staggered grids based on the hyperbolic mild slope equations derived by Copeland.
为了较好地模拟中等水域的波浪传播变形,采用Copeland(1985)的双曲型缓坡方程,在非交错网格下建立数值模型。
2.
Considering the kinematic characteristics of streamflow and cooling water, and based on the control equations of cooling water in the non-orthogonal curvilinear coordinate, a 2-D mathematic model for cooling water is presented with non-staggered grids in the non-orthogonal curvilinear coordinate.
结合河道水流及温排水的运动特性,从非正交曲线坐标系下温排水基本方程出发,采用有限体积法及SIMPLE算法离散求解方程,建立了基于非正交曲线坐标系下非交错网格的平面二维温排水数学模型。
3.
However, its time accuracy on non-staggered grids and moving grids has not been carefully investigated.
然而,在应用到非交错网格和动网格上时,其时间精度还没有被仔细地研究过。
补充资料:交错环和交错代数
交错环和交错代数
alternative rings and algebras
交错环和交错代数1 aitettla幼犯d雌s叨d川邵b”.;助‘T印.叮娜助砚”山田叨皿叨,曦讨J 孪拳所(al temative ring)是指每两个元素都生成一个结合子环的环;孪考华熬(al ter”ativeai二玩a)是(线性)代数并且是交错环.根据E.Artin的一个定理,所有交错环的类由如下一组等式定义: (习)y”x切)(右交错性); (xx)y二x(却)(左交错性).于是,交错环形成一个簇.在这种环里,结合子(ass呱ator)(结合性的亏量) (x,少,:)=(xy卜一x恤)是其自变元的一个斜对称〔交错)函数,这个事实表明使用术语“交错环”是合理的. 交错环的第一个例子是Ca尹ey数(Caylcy num-悦巧),它作成一个交错除环(幻忱n犯ti说s处阴一几城)或交错体,即有单位元的交错环且对于任意b和a笋0,方程ax=b和ya=b有唯一的解.交错除环在射影平面的理论中起着实质性的作用,这是因为一个射影平面是一个Motlfa飞平面(Mdufangp场能)(即关于某一直线的平移平面),当且仅当其三元环的任何坐标化是交错除环.在一个有单位元的环R中,如果每个非零元素均可逆且对任意a,b〔R均有等式a一’(ab)二乙(或者,(b a)a一’=b),则R是交错除环.任何交错除环或者是结合的,或者是其中心上的Ca洲ey一Di改50.代数(Qyley-众汰阳n爽灼ra). 每个单交错环也或者是结合环,或者是其中心上的Cayley一Di由on代数(在这种情形下,此代数未必是体).结合环和本原交错环都被Cayley·Di山on代数所穷尽.所有素交错环R(如果3R护0)或是结合环,或是Cayley一Dickson环. 在相似的条件下,交错环的许多性质本质上不同于结合环.例如,如果R是交错环,A和B是其右理想,则其积月丑未必是右理想,即使A是双边理想也如此.但是,两个双边理想的积仍是双边理想.交错环与结合环的差异也强烈地体现在这样的事实之中:由于括号放的位置不同,元素的积或是零或非零,从而交错环有各种幂零性.通常在交错环中使用如下几种幕零性:可解性(s olvabilit刃(环R称为具有指数m的可解子(s ulvable ringl如果存在自然数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条