1) least square collocation method
最小二乘配点法
1.
Virtual boundary element-least square collocation method for three dimensional piezoelectric materials;
压电材料三维问题的虚边界元——最小二乘配点法
2.
This paper calculates the natural frequencies of circular cylindrical shell filled with liquid by least square collocation method(LSCM).
利用最小二乘配点法计算充液圆柱壳体的固有频率 ,结果与考题相符。
3.
Based on the fundamental equations of the plane magnetoelectroelastic solids and the basic idea of virtual boundary element method for elasticity, a virtual boundary element—least square collocation method (VBEM) for plane magnetoelectroelastic solids is presented.
从电磁弹性固体平面问题的基本方程出发,依据弹性力学虚边界元法的基本思想,利用电磁弹性固体平面问题的基本解,提出了电磁弹性固体平面问题的虚边界元——最小二乘配点法。
2) least squares collocation method
最小二乘配点法
1.
Then the bending problems of arbitrary trapezium plates and triangle plates are solved by least squares collocation method.
本文首先找到了两个满足板弯曲边界条件的挠度试函数,然后用最小二乘配点法求解了任意梯形、三角形薄板的弯曲问题,并给出了具体的算例。
3) least-square collocation method
最小二乘配点法
1.
skew plate is not only an-alyzed and calculated using double-B5 spline cardinal function as the trial function of theleast-square collocation method, but the internal supports and concentrated loading are alsohandled in this paper.
本文以斜交构造异性斜板的弯曲理论为依据,由B样条的性质构造了一组双5次样条基函数,把它作为最小二乘配点法的试函数,分析和计算了斜板的弯曲问题。
4) method of least square about collocation lines
最小二乘配线法
1.
In this paper,single triangular series and the method of least square about collocation lines are used to solve the problem of the bending of thin rectangular plate.
应用单三角级数及最小二乘配线法解矩形薄板的弯曲问题。
5) the least squares alignment algorithm
最小二乘配准法
6) the least squares method of three dots
三点最小二乘法
1.
Targted at overcoming the defect of the traditional methods of constant voltage and disturbance,this paper introduces a new method based on the least squares method of three dots.
为了克服传统固定电压法和扰动法存在的缺陷,提出了基于三点最小二乘法的最大功率点跟踪方法。
补充资料:非线性最小二乘拟合
分子式:
CAS号:
性质:用最小二乘法拟合非线性方程。有些变量之间的非线性模型,通过变量变换可以化为线性模型,此称为外在线性。而有些变量之间的非线性模型,通过变量变换不能化为线性模型,通称为内在非线性。对于非线性模型y=f(ξ,θ)+ε,其残差平方和。S(θ)是θ的函数,当模型关于θ是非线性的,正规方程关于θ也是非线性的。基于使残差平方和s(θ)达到极小的原理求出θ的估计值,拟合非线性回归方程。
CAS号:
性质:用最小二乘法拟合非线性方程。有些变量之间的非线性模型,通过变量变换可以化为线性模型,此称为外在线性。而有些变量之间的非线性模型,通过变量变换不能化为线性模型,通称为内在非线性。对于非线性模型y=f(ξ,θ)+ε,其残差平方和。S(θ)是θ的函数,当模型关于θ是非线性的,正规方程关于θ也是非线性的。基于使残差平方和s(θ)达到极小的原理求出θ的估计值,拟合非线性回归方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条