说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义传输矩阵法
1)  general transmission matrix method
广义传输矩阵法
1.
The general transmission matrix method for one-dimensional(1D) periodic homogeneous medium is applied to found the theoretical analysis model of the acoustic wave propagations.
应用广义传输矩阵法(GT-MM),建立了声波传播特性的理论分析模型,得到了其声波场的平面波解,给出了数值实现方案。
2)  generalized transition matrix
广义传输矩阵
3)  generalized matrix method
广义矩阵法
1.
By means of the generalized matrix method based on non-Cartesian tensor analysis, in an arbitrary coordinates the heat conduction equations are derived.
本文基于非笛卡儿张量分析的广义矩阵法 ,导出求任意正交曲线坐标系导热方程的张量表达式 ,并将它转化为矩阵式 ,借以得出任意正交曲线坐标系的导热方程 ,并用示例加以说明。
4)  transfer matrix method
传输矩阵法
1.
Using transfer matrix method, the optical transmission properties in 1D defect photonic crystals was analyzed, and the band gap property of 1D photonic crystal was obtained.
采用Si和SiO2两种介质材料构造一维缺陷光子晶体,缺陷层介质为Si,利用传输矩阵法对带有缺陷的一维光子晶体的传光特性进行了理论分析,并得到其带隙特性。
2.
Plane wave expansion techniques and transfer matrix method are used to study the two-dimensional photonic crystal with a triangular lattice of dielectric cylinders in air.
将平面波展开法和传输矩阵法作为光子晶体研究的理论工具,计算了二维三角形晶格圆柱晶胞光子晶体的能带结构,并且研究了光子晶体在不同入射角度下的光学传输特性。
3.
The sampled uniform fiber gratings are theoretically analyzed and numerically simulated with the transfer matrix method.
在此基础上用传输矩阵法对取样均匀光纤Bragg光栅进行了理论分析,并依据此方法对取样光栅的反射谱进行了数值仿真,通过对仿真结果的比较,总结了"净光栅"长度、占空比T、取样周期p等参数对取样光栅反射谱特性的影响。
5)  Transfer matrix
传输矩阵法
1.
The authors proposed a new model of one-dimensional photonic crystal composed of alternately arranged RHM and LHM layers, calculated numerically the transmission spectra of the model with the transfer matrix method, and theoretically analyzed characteristics of the band-gap structure.
提出了用正、负折射率介质层交替排列构成的一维光子晶体模型,并且用传输矩阵法计算了该模型的透射谱,从理论上分析了其带隙结构。
2.
The spectral character has been numerically simulated using the transfer matrix approach.
引入分层传输矩阵法建立仿真模型,利用一组典型的光纤布拉格光栅参数并采用分层赋值与矩阵叠加的方法,数值模拟了超声波作用下光纤布拉格光栅的频谱特性。
3.
On the other hand,although the transfer matrix method could be used instead for higher convergence speed,the precision is poor because of the neglect of the grads of strain change.
采用耦合模理论和龙格-库塔的方法可以准确地分析非均匀应变场中的FBG光谱特性,其缺点是收敛速度慢;而传输矩阵法虽然可以大大提高收敛速度,但是由于忽略了非均匀应变场的变化梯度,在分析变化率较大的非均匀应变场时与龙格-库塔方法相比准确度较差,通过改进适用于分析非均匀应变场的FBG等效周期,既保留了传输矩阵分析FBG的快速收敛性,又保证了分析准确性。
6)  transfer matrix method(TMM)
传输矩阵法
补充资料:广义逆矩阵
      逆矩阵概念的推广。若A为非奇异矩阵,则线性方程组A尣=b的解为尣=A_1b,其中A的逆矩阵A_1满足AA_1=A_1A=I(I为单位矩阵)。若A是奇异阵或长方阵,A尣=b可能无解或有很多解。若有解,则解为尣=Xb+(I-XA)у,其中у是维数与A的列数相同的任意向量,X是满足AXA=A的任何一个矩阵,通常称X为A的广义逆矩阵,用Ag、A_或A等符号表示,有时简称广义逆。当A非异时,A_1也满足AA_1A=A,且。故非异阵的广义逆矩阵就是它的逆矩阵,说明广义逆矩阵确是通常逆矩阵概念的推广。
  
  1955年R.彭罗斯证明了对每个m×n阶矩阵A,都存在惟一的n×m阶矩阵 X,它满足:①AXA=A;②XAX=X;③(AX)*=AX;④(XA)*=XA。通常称X为A的穆尔-彭罗斯广义逆矩阵,简称M-P逆,记作A+。当A非异时,A_1也满足①~④,因此M-P逆也是通常逆矩阵的推广。在矛盾线性方程组A尣=b的最小二乘解中,尣=A+b是范数最小的一个解。
  
  若A是n阶方阵,k为满足的最小正整数(rank为矩阵秩的符号),记作k=Ind(A),则存在惟一的n阶方阵X,满足:
  
  (1) AkXA=Ak;(2) XAX=X; (3) AX=XA。通常称X为A的德雷津广义逆矩阵,简称D逆,记??Ad,A(d)或AD等。虽然它和线性代数方程组的解无关,但它在线性差分方程、线性微分方程、最优控制等方面都有应用。例如,设A、B是n阶方阵,齐次差分方程,如果存在一个数λ,使 存在,则它的一般解为
  式中q为任意n维向量;;。
  
  根据实际问题需要还定义了其他各种类型的广义逆矩阵,如网络理论中用到的博特-达芬逆矩阵等。一般说来,它们都具有下列一些性质:当A非异时,广义逆矩阵就是A_1;广义逆矩阵必存在;广义逆矩阵具有逆矩阵的某些性质(或适当修改后的性质),如(A_1)_1=A,(A_1)*=(A*)_1等等。
  
  广义逆的思想可追溯到1903年(E.)I.弗雷德霍姆的工作,他讨论了关于积分算子的一种广义逆(他称之为伪逆)。1904年,D.希尔伯特在广义格林函数的讨论中,含蓄地提出了微分算子的广义逆。而任意矩阵的广义逆定义最早是由E.H.穆尔在1920年提出的,他以抽象的形式发表在美国数学会会刊上。当时人们对此似乎很少注意。这一概念在以后30年中没有多大发展。曾远荣在1933年,F.J.默里和J.冯·诺伊曼在1936年对希尔伯特空间中线性算子的广义逆作过讨论。20世纪50年代围绕着某些广义逆的最小二乘性质的讨论重新引起了人们对这个课题的兴趣。1951年瑞典人A.布耶尔哈梅尔重新发现了穆尔所定义的广义逆,并注意到广义逆与线性方程组的关系。T.N.E.格雷维尔、C.R.拉奥和其他人也作出了重要的贡献。1955年,彭罗斯证明了存在惟一的X=A+满足前述性质①~④,并以此作为 A+的定义。1956年,R.拉多证明了彭罗斯定义的广义逆与穆尔定义的广义逆是等价的,因此通称A+为穆尔-彭罗斯广义逆矩阵。
  
  广义逆的计算方法大致可分为三类:以满秩分解和奇异值分解为基础的直接法,迭代法和其他一些常用于低阶矩阵的特殊方法。
  
  以A+的计算为例。若A是一个秩为r的m×n阶非零矩阵,记作,有满秩分解A=F·G,其中,则,即将广义逆矩阵的计算化为通常逆矩阵的计算。常用LU分解和QR分解等方法实现满秩分解,然后求出A+
  
  若A有奇异值分解A=UDV*,其中U、V为m阶和n阶酉矩阵,是m×n阶矩阵,是r阶对角阵,对角元是A的r个非零奇异值(AA*的非零特征值的平方根),则A+=VD+U*,其中是n×m阶矩阵。也可用豪斯霍尔德变换先将 A化为上双对角阵J0=P*AQ,然后再对J0使用QR算法化为矩阵D=G*J0h,于是A=(PG)D(Qh)*,故A+1=(Qh)D+(PG)*
  
  设λ1是AA*的最大非零特征值,若0<α<2/λ1,则计算A+的一个迭代法是x0=αA*,xn+1=(2I-Axn),当n→∞时,xn收敛于A+
  
  格雷维尔逐次递推法也是计算A+的常用方法。设A的第k列为αk(k=1,2,...,n),A11,Ak=(Ak-1k)(k=2,3,...,n),则
  ,式中
   ;
  ; 
  
  1955年以后,出现了大量的关于广义逆矩阵的理论、应用和计算方法的文献。70年代还出版了一些专著和会议录,指出广义逆矩阵在控制论、系统辨识、规划论、网络理论、测量、统计和计量经济学等方面的应用。
  
  

参考书目
   S.L.Campbell and C.D.Meyer,Jr.,Generalized Inverses of Linear TransforMations,Pitman,London, 1979.
   M.Z.Nashed, ed.,Generalized Inverses and Applications,Academic Press,New York,1976.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条