2) fatigue to failure tester
疲劳龟裂试验机
3) fatigue fracture
疲劳断裂
1.
Calculating method of reliability on anti fatigue fracture of weld;
焊缝材料抗疲劳断裂的可靠性计算方法
2.
An Analysis on Fatigue Fracture of Oil-Suck-Rod of Non- Quenching and Tempering Steel;
非调质钢抽油杆疲劳断裂的分析
3.
The causes of fatigue fracture of cage in high speed ball bearing;
高速球轴承保持架疲劳断裂原因分析
4) fatigue crack
疲劳断裂
1.
The producing of fatigue cracks and fracture in the ultrafine-grained(UFG) and coarse grained(CG) Cu-0.
6Cr合金的驻留滑移带非常杂乱,超细晶铜铬合金的剪切带沿着ECAP最后一道次剪切面发展,沿着ECAP最后一道次剪切面发展的剪切带在疲劳断裂初期和早期的裂纹增殖中起着决定性作用。
2.
From these responses,the fatigue crack cycle life of road was calculated.
为研究公路车辆对道路的破坏性,采用功能化虚拟样机(Functional Virtual Prototype)技术,基于多体系统动力学理论建立车辆系统的功能化虚拟样机,通过仿真得到车辆对道路的动态作用力;采用有限元方法(FEM)进行道路响应的研究,继而进行道路的疲劳断裂分析。
5) fatigue failure
疲劳断裂
1.
The analysis result indicates that the property of the piston failure is fatigue failure and the failure initiation is the cutting trace on the root face of the U trough.
采用扫描电镜等手段分析了断裂活塞,结果表明活塞断裂的性质属于疲劳断裂。
2.
By analysis of the forces acting on the up and the down roller axles of the pinch roller,the cause of the up roller axle fatigue failure but the down roller axle not was found out and the improvement method was given on condition that the material and making process of the up and the down roller axles were sam
通过对送料机夹送辊上、下辊轴的受力分析,找出了在上、下辊轴材料和加工工艺相同条件下,上辊轴发生疲劳断裂,而下辊轴不发生疲劳断裂的原因,并提出解决措施。
3.
Earlier fatigue failure phenomenon of SOFIM Engine connecting rod bolt is concentrated on in this paper.
针对SOFIM连杆螺栓出现的早期疲劳断裂现象,建立了连杆螺栓的有限元模型,利用ANSYS软件对该连杆螺栓进行了有限元分析,并与疲劳试验结果进行了对比,吻合较好。
6) fatigue rupture
疲劳断裂
1.
By means of optical metallurgical microscope and scanning microscope,we have analyzed rupture reason of the supercharger blade,which showed that the break of the blade is fatigue rupture,the reason of the fatigue rupture is caused by corrosive hole and stress concentration.
结果表明,该叶片断裂是单向疲劳断裂。
2.
The cause, characteristic and type of fatigue rupture occurred in the parts of the compressor were analyzed in this article.
分析探讨压缩机零件疲劳断裂的形貌特征原因和防止措
3.
The invalidation of the harmonic gear drive is mostly the fatigue rupture of the flexspline.
谐波齿轮传动的主要失效形式是柔轮的疲劳断裂,小长径比的柔轮的强度更为薄弱。
补充资料:断裂试验
断裂力学中确定材料和结构断裂特性的试验。断裂特性是指材料或结构中与裂纹起裂、扩展、止裂和失稳有关的特性,如脆性转变温度(包括无延性转变温度、脆性断裂起始转变温度等)、裂纹扩展速度和断裂韧性等。常用的表征断裂特性的参量有:临界应力强度因子K(见线弹性断裂力学)、临界裂纹张开位移(见COD法)和J积分的断裂临界值J等。断裂力学在工程中的应用已相当普遍,为了对工程结构作断裂分析,必须先通过试验,获得材料或结构的断裂特性数据。断裂试验涉及的范围很广,按试验的规模断裂试验可分为小型的试验室试验、大型的试验室试验和实际的结构试验;按加载速度可分为静态试验和动态试验;按试验环境可分为高温、低温和包含腐蚀介质的试验;按加载方法可分为拉伸和弯曲试验等。常用的试验有下列四种:
①三点弯曲试验 这是断裂韧性测试中应用最广的一种。因试验中对试样进行三点弯曲加载而得名。三点弯曲试验如图1所示,它用于测定应力强度因子KI、裂纹张开位移δ和J积分等参量。试验中通过测得的载荷- 位移(裂纹嘴张开位移或施力点位移)曲线,可计算出与临界条件相应的参量值。三点弯曲试验中断裂力学参量的表达式如下:
,
,式中P为试验载荷;W和B分别为试样的高和宽;a为试样中的裂纹长度;y1为三点弯曲试样的几何形状因子,它是a/W的函数(查表);ν为泊松比;σy为材料的屈服应力;E为弹性模量(见材料的力学性能);z为与位移测量位置有关的常数;Vp为裂纹嘴张开位移的塑性部分;Up为试样应变能的塑性部分;rp为试样塑性变形阶段的转动因子,常取0.40或0.45。将断裂时的各测量值代入上述公式,就得到KI、δ和J的临界值。
②紧凑拉伸试验 和其他具有同等测试能力的试验相比,这种试验的体积最小(尺寸紧凑),因而得名。紧凑拉伸试验已在断裂韧性和裂纹扩展速度测试中得到广泛应用,特别是被用于核压力容器材料的评价和研究中。紧凑拉伸试验如图 2所示。试验时通过加载孔对试样施加拉伸载荷。紧凑拉伸试验中断裂力学参量的表达式为:
,
,式中y2为紧凑拉伸试样的几何形状因子;t为试样厚度。 ③落锤试验 落锤试验属于动态断裂试验,它是一种特制的简支梁式的试验。图3为落锤试验示意图。试样的受拉伸表面上,堆焊一条纵向的脆性焊道,在焊道上锯一个横向切口。试验时,将试样冷却到一定的温度,让锤头自由落下,对试样作一冲击,并测出使试样脆性焊道上的切口开裂到边缘的最高温度。这温度称为材料的无延性转变温度,简称NDT。它在设计中作为材料的最低使用温度。
④宽板试验 宽板试验是一种大型的试验室试验。在很多情况下,它可以模拟实际焊接结构的断裂。最常用的带切口的焊接宽板试样如图4所示。试样纵向焊缝两侧预先制成的切口用于模拟裂缝。试验时,在所要求的温度下对试板施加拉伸载荷,并测量切口达到开裂时的载荷和应变。低于某一温度时,试板在低应力下就开裂;而在该温度以上,断裂前试板发生屈服,并产生大的应变,这个温度就是脆性断裂起始温度。这种试验往往要求试验机具有数千吨的加载能力。
断裂试验是随工程断裂问题的研究和断裂力学的发展而发展起来的。到目前止,用三点弯曲试验、紧凑拉伸试验测试临界的 KI、δ和J积分的试验方法以及落锤试验的试验方法等已经标准化,但尚需进一步完善。而另一些与环境因素有关的试验、结构模拟试验等则仍在发展之中,有待标准化。另外,各种断裂试验之间的相互关系,试验室试验与结构运行性能之间的关系等,都有待进一步积累数据和研究。
①三点弯曲试验 这是断裂韧性测试中应用最广的一种。因试验中对试样进行三点弯曲加载而得名。三点弯曲试验如图1所示,它用于测定应力强度因子KI、裂纹张开位移δ和J积分等参量。试验中通过测得的载荷- 位移(裂纹嘴张开位移或施力点位移)曲线,可计算出与临界条件相应的参量值。三点弯曲试验中断裂力学参量的表达式如下:
,
,式中P为试验载荷;W和B分别为试样的高和宽;a为试样中的裂纹长度;y1为三点弯曲试样的几何形状因子,它是a/W的函数(查表);ν为泊松比;σy为材料的屈服应力;E为弹性模量(见材料的力学性能);z为与位移测量位置有关的常数;Vp为裂纹嘴张开位移的塑性部分;Up为试样应变能的塑性部分;rp为试样塑性变形阶段的转动因子,常取0.40或0.45。将断裂时的各测量值代入上述公式,就得到KI、δ和J的临界值。
②紧凑拉伸试验 和其他具有同等测试能力的试验相比,这种试验的体积最小(尺寸紧凑),因而得名。紧凑拉伸试验已在断裂韧性和裂纹扩展速度测试中得到广泛应用,特别是被用于核压力容器材料的评价和研究中。紧凑拉伸试验如图 2所示。试验时通过加载孔对试样施加拉伸载荷。紧凑拉伸试验中断裂力学参量的表达式为:
,
,式中y2为紧凑拉伸试样的几何形状因子;t为试样厚度。 ③落锤试验 落锤试验属于动态断裂试验,它是一种特制的简支梁式的试验。图3为落锤试验示意图。试样的受拉伸表面上,堆焊一条纵向的脆性焊道,在焊道上锯一个横向切口。试验时,将试样冷却到一定的温度,让锤头自由落下,对试样作一冲击,并测出使试样脆性焊道上的切口开裂到边缘的最高温度。这温度称为材料的无延性转变温度,简称NDT。它在设计中作为材料的最低使用温度。
④宽板试验 宽板试验是一种大型的试验室试验。在很多情况下,它可以模拟实际焊接结构的断裂。最常用的带切口的焊接宽板试样如图4所示。试样纵向焊缝两侧预先制成的切口用于模拟裂缝。试验时,在所要求的温度下对试板施加拉伸载荷,并测量切口达到开裂时的载荷和应变。低于某一温度时,试板在低应力下就开裂;而在该温度以上,断裂前试板发生屈服,并产生大的应变,这个温度就是脆性断裂起始温度。这种试验往往要求试验机具有数千吨的加载能力。
断裂试验是随工程断裂问题的研究和断裂力学的发展而发展起来的。到目前止,用三点弯曲试验、紧凑拉伸试验测试临界的 KI、δ和J积分的试验方法以及落锤试验的试验方法等已经标准化,但尚需进一步完善。而另一些与环境因素有关的试验、结构模拟试验等则仍在发展之中,有待标准化。另外,各种断裂试验之间的相互关系,试验室试验与结构运行性能之间的关系等,都有待进一步积累数据和研究。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条