1) RadRrac distillation module
RadFrac精馏模块
3) distillation column simulation
精馏塔模拟
1.
Sequential Modular Approach was applied to design distillation column simulation training algorithm.
这证明采用序贯模块法完成精馏塔模拟能够很好满足仿真培训所要求的实时性和逼真
4) Model of Distillation Tower
精馏塔模型
5) cool-mode distillation column
冷模精馏塔
补充资料:精馏
一种利用回流使液体混合物得到高纯度分离的蒸馏方法,是工业上应用最广的液体混合物分离操作,广泛用于石油、化工、轻工、食品、冶金等部门。精馏操作按不同方法进行分类。根据操作方式,可分为连续精馏和间歇精馏;根据混合物的组分数,可分为二元精馏和多元精馏;根据是否在混合物中加入影响汽液平衡的添加剂,可分为普通精馏和特殊精馏(包括萃取精馏、恒沸精馏和加盐精馏)。若精馏过程伴有化学反应,则称为反应精馏。
原理 双组分混合液的分离是最简单的精馏操作。典型的精馏设备是连续精馏装置(图1),包括精馏塔、再沸器、冷凝器等。精馏塔供汽液两相接触进行相际传质,位于塔顶的冷凝器使蒸气得到部分冷凝,部分凝液作为回流液返回塔顶,其余馏出液是塔顶产品。位于塔底的再沸器使液体部分汽化,蒸气沿塔上升,余下的液体作为塔底产品。进料加在塔的中部,进料中的液体和上塔段来的液体一起沿塔下降,进料中的蒸气和下塔段来的蒸气一起沿塔上升。在整个精馏塔中,汽液两相逆流接触,进行相际传质。液相中的易挥发组分进入汽相,汽相中的难挥发组分转入液相。对不形成恒沸物的物系,只要设计和操作得当,馏出液将是高纯度的易挥发组分,塔底产物将是高纯度的难挥发组分。进料口以上的塔段,把上升蒸气中易挥发组分进一步提浓,称为精馏段;进料口以下的塔段,从下降液体中提取易挥发组分,称为提馏段。两段操作的结合,使液体混合物中的两个组分较完全地分离,生产出所需纯度的两种产品。当使 n组分混合液较完全地分离而取得n个高纯度单组分产品时,须有n-1个塔。
精馏之所以能使液体混合物得到较完全的分离,关键在于回流的应用。回流包括塔顶高浓度易挥发组分液体和塔底高浓度难挥发组分蒸气两者返回塔中。汽液回流形成了逆流接触的汽液两相,从而在塔的两端分别得到相当纯净的单组分产品。塔顶回流入塔的液体量与塔顶产品量之比,称为回流比,它是精馏操作的一个重要控制参数,它的变化影响精馏操作的分离效果和能耗。
操作评价 评价精馏操作的主要指标是:①产品的纯度。板式塔中的塔板数或填充塔中填料层高度,以及料液加入的位置和回流比等,对产品纯度均有一定影响。调节回流比是精馏塔操作中用来控制产品纯度的主要手段。②组分回收率。这是产品中组分含量与料液中组分含量之比。③操作总费用。主要包括再沸器的加热费用、冷凝器的冷却费用和精馏设备的折旧费,操作时变动回流比,直接影响前两项费用。此外,即使同样的加热量和冷却量,加热费用和冷却费用还随着沸腾温度和冷凝温度而变化,特别当不使用水蒸气作为加热剂或者不能用空气或冷却水作为冷却剂时,这两项费用将大大增加。选择适当的操作压力,有时可避免使用高温加热剂或低温冷却剂(或冷冻剂),但却增添加压或抽真空的操作费用。
精馏计算 主要是精馏塔的计算。不论是板式塔或是填充塔,通常都按分级接触传质的概念来计算理论板数。对于双组分精馏塔的设计计算,通常给定的设计条件有:液体混合物(料液)的量F和浓度xf(以易挥发组分的摩尔分率表示),以及塔顶和塔底产品的浓度xd和xw。计算所需的理论板数 NT和实际板数NP 。计算前必须先确定合理的回流比。理论塔板数的计算方法有:
①图解法 最常用的是麦凯勃-蒂利图解法(美国W.L.麦凯勃和E.W.蒂利在1925年合作设计的双组分精馏理论板计算的图解方法)用于双组分精馏计算。此法假定流经精馏段的汽相摩尔流量V和液相摩尔流量L以及提馏段中的汽液两相流量V′和L′都保持恒定。此假定通常称为恒摩尔流假定,它适用于料液中两组分的摩尔汽化潜热大致相等、混合时热效应不大、而且两组分沸点相近的系统。图解法的基础是组分的物料衡算和汽液平衡关系。
取精馏段第n板至塔顶的塔段(图2)为对象,作易挥发组分物料衡算得:
式中D为塔顶产品流量;xn为离开第n板的液相浓度;yn+1为离开第n+1板的汽相浓度。此式称精馏段操作线方程,在y-x 图上是斜率为L/V的直线。同样取提馏段第m板至塔底的塔段为对象,作易挥发组分物料衡算得:
式中D为塔底产品流量。此式称为提馏段操作线方程。
将汽液平衡关系和两条操作线方程绘在 y-x直角坐标上(图3)。根据理论板的定义,离开任一塔板的汽液两相浓度 xn与yn,必在平衡线上,根据组分的物料衡算,位于同一塔截面的两相浓度xn与yn+1, 必落在相应塔段的操作线上。在塔顶产品浓度xd和塔底产品浓度xw范围内,在平衡线和操作线之间作梯级,每梯级代表一块理论板,总梯级数即为所需的理论板数NT,跨越两操作线交点的梯级为加料板。计入全塔效率,即可算得实际板数NP(见级效率);或根据等板高度,从理论板数即可算出填充层高度(见微分接触传质设备)。
②捷算法 用作粗略估算,首先根据芬斯克方程,(美国M.R.芬斯克1932年建立的全回流理论板数计算方程)算出采用全回流操作达到给定产品浓度xd和xw所需的最少理论板数Nmin(包括再沸器):
式中α 为待分离两组分间的全塔的平均相对挥发度,常取塔顶和塔底处的相对挥发度的几何平均值。再由 Nmin、最小回流比Rmin和选用的回流比R,从吉利兰经验关联式(1940年美国E.R.吉利兰建立的计算理论板数关联式):
求出所需的理论板数NT。对于相对挥发度在全塔接近常数的系统,即接近于理想溶液的混合液的分离,捷算法较可靠,并可推广到估算多组分料液的精馏。捷算法在作整个生产过程的优化计算时常被采用,以节省时间。
③严格计算法 随着精馏技术日趋成熟和生产规模的扩大,具有多股加料和侧线抽出等特殊功能以及具有侧塔和中间再沸器等的各种复杂的精馏塔(见精馏设备)相继出现。现今越来越需要对精馏作出严格计算,以了解塔内温度、流量和浓度的变化,达到更合理的设计和操作。电子计算机的应用,为严格计算法提供了条件。各种严格计算法均基于四类基本方程:即组分物料衡算式、汽液相平衡关系、归一方程(汽相及液相中各组分摩尔分率之和为 1)和热量衡算方程。对每块理论板都可以建立这些方程,组成一个高维的方程组,然后依靠电子计算机求解。根据不同的指定条件,原则上此方程组可用于新塔设计或对现有塔的操作性能核算。
精馏过程的节能 精馏过程的核心在于回流,而回流必须消耗大量能量。降低能耗是精馏过程发展的重大课题。除了选择经济上合理的回流比外,主要的节能措施有:①热泵精馏。将塔顶蒸气绝热压缩(见热力学过程)升温后,重新作为再沸器的热源(见热泵蒸发);②多效精馏。精馏装置由压力依次降低的若干个精馏塔组成,前一精馏塔塔顶蒸气用作后一精馏塔再沸器的加热蒸气(见多效蒸发);③采用高效精馏塔,可用较小的回流比;采用高效换热器,可降低传热温度差,这样就可以减少有效能损失。④采用电子计算机对过程进行有效控制,减小操作裕度,确保过程在最低能耗下进行。
原理 双组分混合液的分离是最简单的精馏操作。典型的精馏设备是连续精馏装置(图1),包括精馏塔、再沸器、冷凝器等。精馏塔供汽液两相接触进行相际传质,位于塔顶的冷凝器使蒸气得到部分冷凝,部分凝液作为回流液返回塔顶,其余馏出液是塔顶产品。位于塔底的再沸器使液体部分汽化,蒸气沿塔上升,余下的液体作为塔底产品。进料加在塔的中部,进料中的液体和上塔段来的液体一起沿塔下降,进料中的蒸气和下塔段来的蒸气一起沿塔上升。在整个精馏塔中,汽液两相逆流接触,进行相际传质。液相中的易挥发组分进入汽相,汽相中的难挥发组分转入液相。对不形成恒沸物的物系,只要设计和操作得当,馏出液将是高纯度的易挥发组分,塔底产物将是高纯度的难挥发组分。进料口以上的塔段,把上升蒸气中易挥发组分进一步提浓,称为精馏段;进料口以下的塔段,从下降液体中提取易挥发组分,称为提馏段。两段操作的结合,使液体混合物中的两个组分较完全地分离,生产出所需纯度的两种产品。当使 n组分混合液较完全地分离而取得n个高纯度单组分产品时,须有n-1个塔。
精馏之所以能使液体混合物得到较完全的分离,关键在于回流的应用。回流包括塔顶高浓度易挥发组分液体和塔底高浓度难挥发组分蒸气两者返回塔中。汽液回流形成了逆流接触的汽液两相,从而在塔的两端分别得到相当纯净的单组分产品。塔顶回流入塔的液体量与塔顶产品量之比,称为回流比,它是精馏操作的一个重要控制参数,它的变化影响精馏操作的分离效果和能耗。
操作评价 评价精馏操作的主要指标是:①产品的纯度。板式塔中的塔板数或填充塔中填料层高度,以及料液加入的位置和回流比等,对产品纯度均有一定影响。调节回流比是精馏塔操作中用来控制产品纯度的主要手段。②组分回收率。这是产品中组分含量与料液中组分含量之比。③操作总费用。主要包括再沸器的加热费用、冷凝器的冷却费用和精馏设备的折旧费,操作时变动回流比,直接影响前两项费用。此外,即使同样的加热量和冷却量,加热费用和冷却费用还随着沸腾温度和冷凝温度而变化,特别当不使用水蒸气作为加热剂或者不能用空气或冷却水作为冷却剂时,这两项费用将大大增加。选择适当的操作压力,有时可避免使用高温加热剂或低温冷却剂(或冷冻剂),但却增添加压或抽真空的操作费用。
精馏计算 主要是精馏塔的计算。不论是板式塔或是填充塔,通常都按分级接触传质的概念来计算理论板数。对于双组分精馏塔的设计计算,通常给定的设计条件有:液体混合物(料液)的量F和浓度xf(以易挥发组分的摩尔分率表示),以及塔顶和塔底产品的浓度xd和xw。计算所需的理论板数 NT和实际板数NP 。计算前必须先确定合理的回流比。理论塔板数的计算方法有:
①图解法 最常用的是麦凯勃-蒂利图解法(美国W.L.麦凯勃和E.W.蒂利在1925年合作设计的双组分精馏理论板计算的图解方法)用于双组分精馏计算。此法假定流经精馏段的汽相摩尔流量V和液相摩尔流量L以及提馏段中的汽液两相流量V′和L′都保持恒定。此假定通常称为恒摩尔流假定,它适用于料液中两组分的摩尔汽化潜热大致相等、混合时热效应不大、而且两组分沸点相近的系统。图解法的基础是组分的物料衡算和汽液平衡关系。
取精馏段第n板至塔顶的塔段(图2)为对象,作易挥发组分物料衡算得:
式中D为塔顶产品流量;xn为离开第n板的液相浓度;yn+1为离开第n+1板的汽相浓度。此式称精馏段操作线方程,在y-x 图上是斜率为L/V的直线。同样取提馏段第m板至塔底的塔段为对象,作易挥发组分物料衡算得:
式中D为塔底产品流量。此式称为提馏段操作线方程。
将汽液平衡关系和两条操作线方程绘在 y-x直角坐标上(图3)。根据理论板的定义,离开任一塔板的汽液两相浓度 xn与yn,必在平衡线上,根据组分的物料衡算,位于同一塔截面的两相浓度xn与yn+1, 必落在相应塔段的操作线上。在塔顶产品浓度xd和塔底产品浓度xw范围内,在平衡线和操作线之间作梯级,每梯级代表一块理论板,总梯级数即为所需的理论板数NT,跨越两操作线交点的梯级为加料板。计入全塔效率,即可算得实际板数NP(见级效率);或根据等板高度,从理论板数即可算出填充层高度(见微分接触传质设备)。
②捷算法 用作粗略估算,首先根据芬斯克方程,(美国M.R.芬斯克1932年建立的全回流理论板数计算方程)算出采用全回流操作达到给定产品浓度xd和xw所需的最少理论板数Nmin(包括再沸器):
式中α 为待分离两组分间的全塔的平均相对挥发度,常取塔顶和塔底处的相对挥发度的几何平均值。再由 Nmin、最小回流比Rmin和选用的回流比R,从吉利兰经验关联式(1940年美国E.R.吉利兰建立的计算理论板数关联式):
求出所需的理论板数NT。对于相对挥发度在全塔接近常数的系统,即接近于理想溶液的混合液的分离,捷算法较可靠,并可推广到估算多组分料液的精馏。捷算法在作整个生产过程的优化计算时常被采用,以节省时间。
③严格计算法 随着精馏技术日趋成熟和生产规模的扩大,具有多股加料和侧线抽出等特殊功能以及具有侧塔和中间再沸器等的各种复杂的精馏塔(见精馏设备)相继出现。现今越来越需要对精馏作出严格计算,以了解塔内温度、流量和浓度的变化,达到更合理的设计和操作。电子计算机的应用,为严格计算法提供了条件。各种严格计算法均基于四类基本方程:即组分物料衡算式、汽液相平衡关系、归一方程(汽相及液相中各组分摩尔分率之和为 1)和热量衡算方程。对每块理论板都可以建立这些方程,组成一个高维的方程组,然后依靠电子计算机求解。根据不同的指定条件,原则上此方程组可用于新塔设计或对现有塔的操作性能核算。
精馏过程的节能 精馏过程的核心在于回流,而回流必须消耗大量能量。降低能耗是精馏过程发展的重大课题。除了选择经济上合理的回流比外,主要的节能措施有:①热泵精馏。将塔顶蒸气绝热压缩(见热力学过程)升温后,重新作为再沸器的热源(见热泵蒸发);②多效精馏。精馏装置由压力依次降低的若干个精馏塔组成,前一精馏塔塔顶蒸气用作后一精馏塔再沸器的加热蒸气(见多效蒸发);③采用高效精馏塔,可用较小的回流比;采用高效换热器,可降低传热温度差,这样就可以减少有效能损失。④采用电子计算机对过程进行有效控制,减小操作裕度,确保过程在最低能耗下进行。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条