1) GRNN neural network
GRNN神经网络
1.
Algorithm for artificial - workpiece - oriented correction based on GRNN neural network;
基于GRNN神经网络的工件智能矫正算法
2.
By analyzing influencing factors of rolling temperature and by selecting suitable neural network,the best architecture of the network can improve the prediction accuracy,and compared with BP network,the result indicates that GRNN neural network has better accuracy and adaptability of the network.
针对中厚板轧机控制模型中的轧制温度精度的提高问题,以4200轧机轧制的大量实测数据为基础,利用Matlab人工神经网络工具箱,建立了中厚板轧制温度的GRNN神经网络预测模型。
2) GRNN neural networks modeling
GRNN神经网络模型
4) GRNN
GRNN网络
1.
Partial least squares(PLS) and generalized regression neural network(GRNN) prediction model for the determination of fibre,starch and protein in potatoes had been established with good veracity.
偏最小二乘(partial least squares,PLS)与广义回归神经网络(generalizedregression neural networks,GRNN)联用对土豆样品建立起粗纤维、淀粉、蛋白质含量的预测校正模型,用PLS法将原始数据压缩为主成份,取前3个主成份的12个特征吸收峰输入GRNN网络,网络光滑因子iσ为0。
2.
The present paper introduces an application of near infrared spectroscopy(NIRS) multi-component quantitative analysis by building partial least squares (PLS)-generalized regression neural networks (GRNN) model.
马氏距离法剔除强影响点和奇异点,用PLS法将原始数据压缩为主成分,取8个主成分吸收峰与4个原始图谱特征峰值输入GRNN网络,网络光滑因子σi为0。
5) neural network
神经网络
1.
Metal magnetic memory signal recognition by neural network for welding crack;
焊接裂纹金属磁记忆信号的神经网络识别
2.
Study on a neural network model to predict the mechanical properties of high speed heavy rail steel at Pan Steel;
攀钢高速重轨神经网络性能预报模型研究
3.
Application of BP neural network in prediction of temperature rise for die cavity;
神经网络在模具型腔温升预测中的应用
6) neural networks
神经网络
1.
Quantitative analysis of artificial intelligence neural networks in risk assessment of gas accidents in coal mine;
人工智能神经网络在煤矿瓦斯重大危险源评价中的定量分析
2.
Influence of data on the quality of mine tremors hazard assessment using neural networks;
神经网络预测矿震危险性
3.
Chinaware bottle lid color matching based on neural networks;
基于神经网络的瓷酒瓶瓶盖配色
补充资料:Hopfield神经网络模型
Hopfield神经网络模型
Hopfield neural network model
收敛于稳定状态或Han加Ing距离小于2的极限环。 上述结论保证了神经网络并行计算的收敛性。 连续氏pfield神经网络中,各个神经元状态取值是连续的,由于离散H6pfield神经网络中的神经元与生物神经元的主要差异是:①生物神经元的I/O关系是连续的;②生物神经元由于存在时延,因此其动力学行为必须由非线性微分方程来描述。为此,在1984年J.J.H叩fi酗提出了连续氏pfield神经网络,它可用图1所示的电路实现,其动态方程┌───┐│·T叮 │└───┘图1连续F砧pfield神经网络 (a)Sigmoid非线性;(b)神经元模型可由下述微分方程式描述: 、,产 门J /r、l、1.。瓮一客、一佘Ii认=f(u£)£=l,2,…,n式中f(·)为连续可微的Sign101d函数;T,j=兀、i,j=1,2,“’,n几=0]=i1~.吞~·‘八文一Q*+,戮T,j‘一‘,2,”一”连续时间氏pfield神经网络式的计算能量函数定义为:一告客客几从砚 石l「Vi_1,、,合,,, +乞古!‘厂‘(x)dx一乙I,从(4) ’月R‘Jo“‘、一’一月一,” 对于式(3),若f一‘为单调增且连续,C>0,T,j=几(i,j=1,2,一,n),则沿系统的运动轨道有dE一。-丁丁足之Uat当且仅当贷一。时 箭一。式(3)的稳定平衡点就是能量函数E〔式(4)」的极小点,反之亦然。同时,连续氏pfield神经网络式(3)以大规模非线性连续时间并行方式处理信息。网络的稳定平衡点对应于其计算能量函数E的极小点,网络的计算时间就是它到达稳定的时间,网络的计算在系统趋于稳态的过程中也就完成了。这也是式(3)用于神经计算及联想记忆的基本原理,也即神经计算机的基本原理。HoPfield shenling wangluo moxingHopfield神经网络模型(Hopfieldne,Ine幻即0比m侧触l)一种单层全反馈的人工神经网络模型(后称之为氏p玉idd模型),它对推动人工神经网络研究的复苏起了很重要的作用。 且,lield对人工神经网络研究的贡献主要有: (l)把有反馈的神经网络看作一个非线性动力系统,提出了系统的全局Lyap阴lov函数(或称能量函数)的概念,用于系统稳定性的分析; (2)利用上述分析方法解决人工智能中的组合优化问题,如15护;(3)给出了利用模拟电子线路实现的连续Hopfidd网络的电路模型,为进一步研究神经计算机创造了条件。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条