说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 地下管道涂料
1)  underground pipeline coatings
地下管道涂料
1.
The current development in anti-corrosive coatings is discussed in terms of the marine coatings, large steel structure coatings, aircraft coatings, underground pipeline coatings and heavy duty coatings.
从海洋涂料、大型钢结构涂料、航空涂料、地下管道涂料和重防腐涂料近年来的一些变化来论述防腐蚀涂料的发展。
2)  underground pipeline
地下管道
1.
Seismic reliability analysis of underground pipeline system using artificial neural networks;
基于神经网络方法的地下管道系统地震可靠性分析
2.
Status and prospects of underground pipeline rehabilitation techniques in China
我国地下管道非开挖修复技术现状与展望
3.
Parameter sensitivity analysis of seismic response of underground pipeline based on GRNN
利用GRNN方法分析地下管道抗震性能影响因素的敏感性
3)  underground pipelines
地下管道
1.
Research on practical method for predicting earthquake damage to underground pipelines;
地下管道震害预测实用方法的研究
2.
The vulnerability assessment of underground pipelines is significant for risk assessment system of lifeline anti-seismic engineering.
地下管道的易损性评价是生命线地震工程风险评价体系的重要研究内容。
4)  buried pipeline
地下管道
1.
Study on floatation response of buried pipelines due to non-homogeneous soil liquefaction;
不均匀场地土液化引起的地下管道上浮反应研究
2.
Study on the floatation response of buried pipelines due to soil liquefaction;
场地土液化引起的地下管道上浮反应研究
5)  underground pipe
地下管道
1.
Deduced from caisson method, this article puts forward, a new method of constructing underground pipe in densely built area the Sinking Trough method.
为解决在建筑密集地区修筑地下管道的问题 ,受“沉井法”的启发 ,提出一种新的施工方法——“沉槽法”。
2.
According to corresponding standard, the paper gets underground pipe analysis model and takes random dynamic reliability analysis method.
本文根据规范[1]给出的地下管道分析模型,并采用随机动力可靠性分析方法,对地震波作用下的管道进行简化计算,对沈阳市地下管道进行分析预测,并给出在不同地震作用下的预测结果。
3.
Detection of underground pipelines is of great significance in normal activities.
地下管道的检测,在日常的生产活动中,意义是非常重大的。
6)  bitumastic pipeline coating
管道沥青涂料
补充资料:地下管道
      敷设在地下用于输送液体?⑵寤蛩缮⒐烫宓墓艿馈V泄糯缫巡捎锰胀辽罩频牡叵屡潘艿馈C鞒ǘ急本?,大量采用砖和条石砌筑地下排水管道。宽达1米左右,高达 2米左右。现代的地下管道种类繁多,有圆形、椭圆形、半椭圆形、多圆心形、卵形、矩形(单孔、双孔和多孔)、马蹄形等各种断面形式,采用钢、铸铁、混凝土、钢筋混凝土、预应力混凝土、砖、石、石棉水泥、陶土、塑料、玻璃钢(增强塑料)等材料建造。
  
  类别与适用范围  有以下数种:
  
  预制混凝土圆管和预制钢筋混凝土圆管  均为工厂制作的机制管,用离心法、悬辊法和立式挤压法制造。管内径小于 400毫米时采用混凝土管;大于 500毫米时采用钢筋混凝土管。中国在70年代已生产和敷设管径为2000毫米左右的大口径管道。圆管的壁厚为内径的1/12~1/10,混凝土标号不低于300号,钢筋大部用冷拔低碳钢丝。平口管接口可用水泥砂浆或钢丝网水泥砂浆抹带;企口管接口用膨胀水泥或石棉水泥填实;当防渗要求较高时宜用预制或现场灌筑的混凝土套环接口,在管接口部分用水泥砂浆,膨胀水泥或石棉水泥等材料填实。
  
  预应力混凝土管  内径为 400~1400毫米的管子可用于工作压力为0.4~1.2兆帕的管道中;当工作压力小于0.4兆帕时,最大管径可达4000毫米。采用承插式接口和圆形断面胶圈密封止水。有管心绕丝和立式振动挤压两种制管工艺。混凝土标号不低于400号,预应力钢筋用高强冷拔钢丝。
  
  自应力混凝土管  用于工作压力为0.4~1兆帕的输水管道。内径100~600毫米。采用承插式接口和圆形断面胶圈密封止水。这是一种利用膨胀水泥张拉钢筋而产生预应力的钢筋混凝土管。
  
  铸铁管  用于工作压力不超过 1兆帕的输水管道。分低压管(小于0.45兆帕)、普压管(0.45~0.75兆帕)和高压管(0.75~1兆帕)三种,管径可达1200毫米。有连续铸造和砂型铸造(直立式和离心式)两种制管工艺。
  
  钢管  用于工作压力为 1兆帕以下的输水、输油和输气管道,管内径可达3000毫米以上。当内径大于1600毫米时可在管壁上焊刚性环以减小管壁厚度。采用焊接接口。
  
  砖石管道  用于无内压的输水和排水管道,断面形式一般为矩形或拱形。由于地方性材料砖、石价廉,施工方便,且管道大小可根据地形和流量任意调整,因此,砖石管道为中国各地区普遍采用。矩形断面的净宽可达4米左右,高达3米。拱形断面一般有上部为半圆,下部为直墙的马蹄形和多圆心形两种形式,净宽可达4米左右(图1)。
  
  
  砖石管道大多用混凝土或钢筋混凝土底板,矩形断面管道的顶板也采用钢筋混凝土预制板。由于砖石砌体的抗渗能力差,一般用水泥砂浆抹面防渗,因此,不宜用于防渗要求高的管道。砖石砌矩形管道还可用作地下通行和半通行的暖气和电缆沟。
  
  钢筋混凝土管道  用于防渗要求高的大中型输水排水管道。现场灌筑的大尺寸管道,其工作内压可达0.2兆帕时,内径较大。中国已建的大型单孔矩形断面净宽达8.5米,净高达4.2米;双孔断面中每孔的净宽和净高分别达7米和3.5米。中型的矩形和拱形断面也可采用预制装配结构。图2为施工中的预制装配排水管道,其底板均在现场灌筑。
  
  
  管道计算  根据下列因素进行计算:
  
  荷载  作用在地下管道上的荷载,主要有管道自重、管内介质压力、竖向和水平土压力、地下水压力、地面活载(交通荷载)产生的竖向和水平压力以及地震作用等,其中除管自重和管内介质压力外,都直接或间接地与管道周围土体发生关系。土体不仅对管道施加荷载,而且对管道的变形起约束作用。圆形或椭圆形管道受到竖向土压后,竖向直径减小,水平向直径增大,但由于管道被土体包围,因此产生水平土压力。钢筋混凝土、铸铁、石棉水泥管等刚性管的刚度大,竖向和水平向变形都很小,由此引起的土的弹性抗力很小。因此,作用在管道上的水平土压力通常按主动土压力计算。对钢管、波纹钢管、玻璃管等柔性管,在竖向土压力作用下,其变形可达管直径的2~5%,相应的水平向变形受到土的弹性抗力的约束,从而使管道对竖向土压力的承载能力相应提高。
  
  集中系数  管道上的竖向荷载应等于管道上部土体重量乘以大于1的系数,这个系数称集中系数。在中国一般采用1.05~1.4。而当槽宽很窄或不开槽埋管时,由于管道上部土体受到两侧土体的向上摩擦力,因此管道上的竖向荷载应等于管道上部土体重量乘以小于 1的集中系数。柔性管管体的竖向变位较大,上部土体之间摩擦力影响不大,竖向土压力取管道上部土体重量。
  
  土体密实度的影响  土体的相对沉降和弹性抗力取决于土的性质和密实度。因此,对开槽埋设的管道,应要求管道两侧回填土的密实度达到90%以上,对柔性管应达到95%以上。管顶上部的回填土亦应根据不同部位提出相应的密实度要求,使作用在管道上的土压力值减小到最低限度。
  
  地面车辆的作用  当管顶覆土较薄时,应考虑地面车辆通过土体传到管道上的压力。由于车辆以集中力的形式作用在地面上,因此,可采用布森涅斯克弹性半无限体理论来计算。在实用上可简化为分布角方法,即假定地面集中荷载按与竖直线成30°~45°的分布角往下均匀传播。当管顶覆土超过2米时,车辆荷载的影响可以不计。
  
  圆管荷载计算简图  对圆形刚性管道,一般是将竖向和水平土压力作为均布压力作用在管道顶部和两侧,基床反力在支承角2α(图3)范围内按均布或按一定的分布规律作用在管道上。当为土基床时可采用抛物线图形,如为混凝土基床则接近于均布甚至两侧反力大于管底反力。由于施工条件的限制,土基床的支承角2α≤90°,而混凝土基床的支承角2α最大可达180°,因此采用混凝土基床能提高管的承载能力,在工程实践中亦有人采用根据试验结果提出圆管上的土压力和土基床反力为圆弧形(图4)的假定。  对柔性管道,由于土的弹性抗力的作用,其两侧的荷载图形可用抛物线表示,在管中心处压力值最大。土的弹性抗力的大小,可根据两侧回填土的实测数据和工程实践的经验来确定。
  
  断面计算  根据弹性理论求得管道各断面内力后,按强度选择断面尺寸。混凝土、钢筋混凝土和预应力混凝土管尚需进行抗裂度验算和控制裂缝宽度的计算。钢管还应验算稳定性和刚度。计算自应力混凝土管和铸铁管的强度,有时需做标准管段的强度对比试验。凡工厂生产的各种标准规格管,常按厂方提供的技术指标,核算管道的承载能力。
  
  管道地基  开槽埋管时,管道地基上的附加荷载很小,因此只需把管道安放在可靠的原状土层上,地基可不作处理。但如果管道敷设在回填土、淤泥上,或在被施工超挖、原状地基被破坏的土层上,则必须对地基进行适当的处理后才能敷管。当管道沿长度方向通过不同地层或相邻区段,其竖向荷载变化较大时,管道沿纵向可能产生较大的不均匀沉陷,应该用柔性接口或沿纵向对地基进行处理,以防止管道断裂。
  
  环形断面管多为工厂生产的标准化产品,分节运到现场就位安装和进行接口,同时支模和灌筑管基混凝土,这样可加快施工进度和保证工程质量。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条